
i 

 

WARSAW UNIVERSITY OF TECHNOLOGY 

FACULTY OF MATHEMATICS AND INFORMATION SCIENCE 

 

 

 

Ph.D. Thesis 

 

Rauzan Sumara, M.Sc. 

Multiple Representation-Based Ensembles for Time Series 

Classification 

 

 

Supervisor 

Prof. dr hab. inż. Władysław Homenda 

 

 

WARSAW 2025  



ii 

 

 

  



iii 

 

Abstract 
 

Time series classification has gained more attention due to its potential in various fields, 

such as healthcare (e.g., diagnosing diseases based on patient vitals), industrial monitoring 

(e.g., detecting machine faults), and environmental studies (e.g., weather pattern 

recognition). Many algorithms have been specifically designed for time series classification. 

Those techniques can be categorized based on the fundamental data representation 

employed. Feature-based approaches depend on global features extracted through a 

straightforward pipeline and fed into an appropriate classifier. Dictionary-based methods 

transform real-valued time series into discrete symbol sequences, thereby exploiting the 

frequency of recurrent patterns. Interval-based approaches generate features from specific 

time segments within the series, revealing temporal characteristics of time series. Shapelet-

based approaches identify phase-independent subsequences to effectively discriminate 

between time series. The current attractive method in classifying time series is to utilize two 

or more representations. 

This thesis introduces MuRBE (Multiple Representation-Based Ensembles), a novel 

heterogenous ensemble for time series classification. The MuRBE leverages diverse 

representation domains, including feature-based, dictionary-based, interval-based, and 

shapelet-based methods. Exploiting complementary information from different 

representations makes it particularly effective in improving classification performance. We 

additionally present two innovative classifiers that serve as the components within the 

MuRBE structure, namely feature-based autoregressive fractional integrated moving 

average with random forest (ARFIMA-RF) and dictionary-based symbolic aggregate 

approximation with stacking gated recurrent unit and convolutional neural networks (SAX-

SGCNN). We demonstrate that MuRBE is significantly more accurate than the base 

classifiers and achieves competitive performance across the current state-of-the-art methods 

on 40 UCR/UEA archive datasets. 
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Streszczenie 
 

Klasyfikacja szeregów czasowych zyskała na znaczeniu ze względu na jej potencjał w 

różnych dziedzinach, takich jak opieka zdrowotna (np. diagnozowanie chorób na podstawie 

parametrów życiowych pacjentów), monitorowanie przemysłowe (np. wykrywanie usterek 

maszyn) oraz badania środowiskowe (np. rozpoznawanie wzorców pogodowych). Wiele 

algorytmów zostało specjalnie zaprojektowanych do klasyfikacji szeregów czasowych. 

Techniki te można podzielić na kategorie w zależności od podstawowego sposobu 

reprezentacji danych. Podejścia oparte na cechach polegają na globalnych cechach 

wyekstrahowanych za pomocą prostego procesu i wykorzystanych w odpowiednim 

klasyfikatorze. Metody oparte na słownikach przekształcają rzeczywiste szeregi czasowe w 

dyskretne ciągi symboli, wykorzystując tym samym częstość powtarzających się wzorców. 

Podejścia oparte na przedziałach generują cechy z określonych segmentów czasowych w 

serii, ujawniając cechy temporalne szeregów czasowych. Metody oparte na shapeletach 

identyfikują podciągi niezależne od fazy, które skutecznie rozróżniają szeregi czasowe. 

Obecnie atrakcyjną metodą klasyfikacji szeregów czasowych jest wykorzystanie dwóch lub 

więcej reprezentacji jednocześnie. 

Niniejsza praca przedstawia MuRBE (Multiple Representation-Based Ensembles), 

nowatorski heterogeniczny zespół klasyfikatorów dla klasyfikacji szeregów czasowych. 

MuRBE wykorzystuje różnorodne domeny reprezentacji, w tym metody oparte na cechach, 

słownikowe, oparte na przedziałach oraz shapeletowe. Wykorzystanie komplementarnych 

informacji z różnych reprezentacji czyni go szczególnie skutecznym w poprawie wydajności 

klasyfikacji. Dodatkowo przedstawiamy dwa innowacyjne klasyfikatory, które pełnią 

funkcję komponentów w strukturze MuRBE, a mianowicie autoregresyjny ułamkowo 

całkowany model średniej ruchomej z losowym lasem (ARFIMA-RF) oparty na cechach 

oraz słownikową symboliczna aproksymację agregacji z warstwą stackingową GRU i 

sieciami konwolucyjnymi (SAX-SGCNN). Wykazujemy, że MuRBE jest znacząco 

dokładniejszy niż klasyfikatory bazowe oraz osiąga konkurencyjne wyniki względem 

najnowocześniejszych metod na 40 zbiorach danych z archiwum UCR/UEA. 

 

 



v 

 

Acknowledgment 

First and foremost, I wish to express my deepest gratitude to God, the source of all mercy 

and blessings, for His unceasing guidance and grace throughout this journey. It is through 

His will that I have been able to persevere and overcome the many challenges faced along 

the way. His presence has been my constant strength, and for that, I remain eternally grateful. 

I am profoundly grateful to my supervisor, Prof. dr hab. inż. Władysław Homenda, 

whose wisdom, patience, and extraordinary guidance have shaped not only this thesis but 

my personal and academic development. From the beginning, your mentorship has been a 

beacon of knowledge, encouraging me to think critically and strive for excellence. Your 

insightful feedback and unwavering support have enabled me to reach new heights and 

realize my full potential. It is a true honor to have learned from you, and I cannot thank you 

enough for your persistent encouragement and belief in my abilities. 

To my beloved family, especially my parents, I owe everything. Your unconditional 

love, sacrifices, and unwavering belief in me have formed the foundation of my 

perseverance. Your support and prayers have carried me through every obstacle and moment 

of doubt. I am eternally thankful for the strength and motivation you have provided me 

throughout this journey. 

I would also like to express my sincere gratitude to co-authors, friends, colleagues, and 

the academic community at the Warsaw University of Technology. Your fellowship, 

support, and shared experiences have made this academic journey both meaningful and 

enjoyable. The resources, opportunities, and collaborative spirit within this institution have 

played a substantial part in forming this work, and I am genuinely thankful for all the support 

I have received. May this thesis stand as a testament to the collective effort of all those who 

have walked beside me. 

Rauzan Sumara 

 Warsaw, May 25, 2025 

 

 



vi 

 

 

  



vii 

 

 

 

 

 

 

 

Dedicated to my parents 

Usman 

& 

Nurainun 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

 

  



ix 

 

Table of Contents 

Introduction ..................................................................................................... 1 

1.1 Summary of Contributions ....................................................................................... 3 

1.2 Structure of This Work ............................................................................................ 4 

1.3 List of Publications .................................................................................................. 5 

Time Series Classification Tasks.................................................................... 7 

2.1 Definitions ................................................................................................................ 8 

2.2 UCR/UEA Time Series Classification Archive ....................................................... 9 

2.1.1 ArrowHead ................................................................................................... 10 

2.1.2 Beef ............................................................................................................... 11 

2.1.3 ECG200 ........................................................................................................ 12 

2.1.4 GunPoint ....................................................................................................... 12 

2.1.5 Plane ............................................................................................................. 13 

2.1.6 ScreenType ................................................................................................... 13 

2.1.7 SemgHandGenderCh2 .................................................................................. 14 

2.1.8 SyntheticControl ........................................................................................... 14 

State-of-the-Art Overview ............................................................................ 17 

3.1 Feature-Based Approaches .................................................................................... 17 

3.1.1 TSFresh and FreshPRINCE .......................................................................... 18 

3.1.2 Catch22 ......................................................................................................... 18 

3.1.3 Signatures ..................................................................................................... 19 

3.2 Dictionary-Based Approaches ............................................................................... 19 

3.2.1 WEASEL ...................................................................................................... 21 



x 

 

3.2.2 TDE .............................................................................................................. 22 

3.3 Interval-Based Approaches .................................................................................... 23 

3.3.1 TSF ............................................................................................................... 23 

3.3.2 RISE ............................................................................................................. 24 

3.3.4 STSF and R-STSF ........................................................................................ 24 

3.3.3 CIF ................................................................................................................ 25 

3.3.5 QUANT ........................................................................................................ 25 

3.4 Shapelet-Based Approaches .................................................................................. 26 

3.4.1 STC ............................................................................................................... 27 

3.4.2 RSF ............................................................................................................... 27 

3.4.3 RDST ............................................................................................................ 28 

3.5 Ensemble-Based Approaches ................................................................................ 28 

The MuRBE Structure .................................................................................. 33 

4.1 ARFIMA-RF .......................................................................................................... 38 

4.2 SAX-GCNN ........................................................................................................... 42 

4.2.1 Standardizing the time series ........................................................................ 42 

4.2.2 Converting numeric time series into symbolic time series .......................... 43 

4.2.3 Generating words from symbolic time series ............................................... 43 

4.2.4 Training deep learning model ...................................................................... 44 

4.2.5 Choosing alphabet and window size ............................................................ 46 

4.3 DrCIF ..................................................................................................................... 48 

4.4 RDST ..................................................................................................................... 50 

Experiments ................................................................................................... 52 

5.1 Experimental Setup ................................................................................................ 52 

5.2 Datasets .................................................................................................................. 54 

5.3 Results .................................................................................................................... 62 



xi 

 

5.3.1 Comparison with base classifiers ................................................................. 62 

5.3.1 Comparison with the state-of-the-art methods ............................................. 64 

5.3.1 Pairwise comparison with other ensemble-based approaches ...................... 71 

5.3.1 Comparison across datasets and domain applications .................................. 73 

5.3.2 Scalability ..................................................................................................... 74 

Conclusions .................................................................................................... 80 

6.1 Summary ................................................................................................................ 80 

6.2 Limitation ............................................................................................................... 81 

References ...................................................................................................... 84 

Additional Academic Achievements ............................................................ 90 

Appendix of Publications [P1-P3] ................................................................ 92 

 

 

  



xii 

 

  



xiii 

 

List of Figures 

 

Figure 1. Data mining tasks. .................................................................................................. 8 

Figure 2. Example of time series classification. In this case, the objective is to differentiate 

between electroencephalogram (EEG) signals corresponding to an open-eye state 

(blue) and those indicative of seizure activity (red) [10]. .................................... 9 

Figure 3. The example of the ArrowHead dataset obtained from [12]................................ 10 

Figure 4. Implementation of angle-based method on human skull image obtained from [13].

 ........................................................................................................................... 11 

Figure 5. The example of the Beef dataset obtained from [15]. .......................................... 11 

Figure 6. The example of the ECG200 dataset obtained from [17]. ................................... 12 

Figure 7. Illustration of gun and no gun (pointing) of the GunPoint dataset obtained from 

[18]..................................................................................................................... 13 

Figure 8. Illustration of Aeroplane: (a) Mirage, (b) Eurofighter, (c) F-14 wings closed, (d) 

F-14 wings opened, (e) Harrier, (f) F-22, and (g) F-1 from Plane dataset obtained 

from [12]. ........................................................................................................... 13 

Figure 9. The example of the ScreenType dataset obtained from [12]. .............................. 14 

Figure 10. Time series example of (a) SemgHandGenderCh2 and (b) SyntheticControl 

datasets obtained from [12]. .............................................................................. 15 

Figure 11. Visualization of feature-based representation obtained from [21]. .................... 17 

Figure 12. A summary of feature-based approaches and their relations. Our experiments 

include only those algorithms that are outlined with the thick border line. ...... 18 

Figure 13. Transformation of a numeric time series into the sequence of words using (1) 

overlapping time windows, (2) discretizing the windows into words, and (3) 

creating the word histogram. ............................................................................. 20 

Figure 14. A summary of dictionary-based approaches and their relations. Our experiments 

include only those algorithms that are outlined with the thick border line. ...... 21 



xiv 

 

Figure 15. Identifying differences between time series classes. Analyzing feature statistics 

in subsequences of time series can reveal interpretable differences that 

distinguish labeled classes. In the example, two series from different classes 

having differences in linear trend, variance, and mean from distinct intervals. 

Quantifying these features and their discriminative time intervals provides insight 

into how and when the classes differ. ............................................................... 22 

Figure 16. Overview of TSF: (a) random intervals are extracted from each time series, and 

(b) three statistical characteristics are calculated for the corresponding 

subsequences: the mean, standard deviation (SD), and slope. .......................... 23 

Figure 17. A summary of interval-based approaches and their relations. Our experiments 

include only those algorithms that are outlined with the thick border line. ...... 24 

Figure 18. An example of time series from class 1 (blue circles) and class 2 (red squares). 

The distances between all possible subseries and shapelets plotted as 

circles/squares. The candidate shapelet appears more similar to the series of class 

1 while demonstrating more dissimilarity to the series of class 2, which displays 

a contrasting peak shape. ................................................................................... 26 

Figure 19. A summary of shapelet-based approaches and their relations. Our experiments 

include only those algorithms that are outlined with the thick border line. ...... 27 

Figure 20. A review of the HC2 ensemble structure obtained from [2]. ............................. 29 

Figure 21. A summary of ensemble-based approaches and their relations. Our experiments 

include only those algorithms that are outlined with the thick border line. ...... 30 

Figure 22. A review of the InceptionTime structure obtained from [7]. ............................. 31 

Figure 23. Illustration of the effect of the fuzzy-rank method compared to other schemes on 

a toy instance classification. .............................................................................. 33 

Figure 24. The structure of the proposed method. .............................................................. 35 

Figure 25. Visualizations of nonlinear functions utilized for calculating fuzzy ranks. ...... 35 

Figure 26. An overview of the proposed ensemble structure for a three-class problem. .... 37 

Figure 27. Critical difference (CD) diagrams for five ensemble schemes on 40 UCR/UEA 

datasets built using LR, SVM, C4.5, NN, and NB base classifiers. The ensemble 

schemes are MV, MaV, PV, WAP, and FuzzyRanks. ...................................... 38 



xv 

 

Figure 28. The concept of transforming numerical data into symbols and generating a 

sequence of words. ............................................................................................ 44 

Figure 29. Proposed stacked deep learning architecture. .................................................... 44 

Figure 30. Test accuracy for selected datasets based on alphabet size and word length..... 47 

Figure 31. Each selected dataset showing a different range of time series, with the darker 

line representing the average time series. .......................................................... 59 

Figure 32. Selected datasets representing single example time series for each class. ......... 60 

Figure 33. Violin plots of selected datasets showing variability of time series in each class.

 ........................................................................................................................... 61 

Figure 34. CD diagram of average ranks comparing the performance of MuRBE with base 

classifiers on test accuracy on 40 UCR/UEA datasets. ..................................... 62 

Figure 35. The MCM of average accuracy comparing the performance of MuRBE with base 

classifiers on the testing set on 40 UCR/UEA datasets. .................................... 63 

Figure 36. The CD diagram based on the average ranks of all compared state-of-the-art 

methods on test accuracy on 40 UCR/UEA datasets. ........................................ 64 

Figure 37. Custom ridgeline plot illustrating distribution and quantiles of each algorithm on 

test accuracy on 40 UCR/UEA datasets. ........................................................... 65 

Figure 38. CD diagrams of average ranks of (a) accuracy, (b) balanced accuracy, and (c) F1 

score of MuRBE in comparison with non ensemble-based approaches on the 

testing set on 40 UCR/UEA datasets. ................................................................ 67 

Figure 39. The MRM of average scores of MuRBE in comparison with non ensemble-based 

approaches on the testing set on 40 UCR/UEA datasets. .................................. 68 

Figure 40. CD diagrams of average ranks: (a) accuracy, (b) balanced accuracy, and (c) F1 

score of MuRBE in comparison with other ensemble-based approaches on the 

testing set on 40 UCR/UEA datasets. ................................................................ 69 

Figure 41. The MCM of average scores of MuRBE in comparison with other ensemble-

based approaches on the testing set on 40 UCR/UEA datasets. ........................ 70 

Figure 42. A custom box plot representing accuracy, balanced accuracy, and F1 score with 

average values (orange diamond) on the testing set on 40 UCR/UEA datasets.71 



xvi 

 

Figure 43. Pairwise plot comparing the test accuracy of MuRBE with other ensemble-based 

approaches: (a) HC2, (b) Arsenal, (c) Hydra, (d) InceptionTime, (e) PF, (f) 

ROCKET, and (g) TS-CHIEF on 40 UCR/UEA datasets. ................................ 73 

Figure 44. Test accuracy for MuRBE against the seven ensemble-based classifiers (Arsenal, 

HC2, Hydra, InceptionTime, PF, ROCKET, and TS-CHIEF) on 40 UCR/UEA 

datasets. The orange area represents the seven classifiers' range of accuracies. 

Green dots indicate that MuRBE achieves the highest accuracy against the 

competitors, while red dots indicate the opposite. ............................................ 73 

Figure 45. Ascending average values (orange diamond) of computational time on (a) train, 

(b) test, and (c) total on 40 UCR/UEA datasets by method (in minutes). The time 

is on a log scale. ................................................................................................ 76 

Figure 46. Pallete barplot of total computational time on 40 UCR/UEA datasets in each 

method per time series domain, such as Electric Devices, ECG, Image Outline, 

Motion Capture, Sensor Readings, Simulated, Spectrographs, and Spectrum. The 

time is on a log scale. ........................................................................................ 77 

Figure 47. A comparison of classifiers regarding average ranks, average accuracy, and total 

time on 40 UCR/UEA datasets. The total time is on a log scale. ...................... 78 

 

 

  



xvii 

 

List of Tables 

 

Table 1. Pseudo algorithm of DrCIF obtained from [2] ...................................................... 49 

Table 2. Pseudo algorithm of RDST obtained from [8] ...................................................... 51 

Table 3. Base classifier configurations in our experiments. ................................................ 53 

Table 4. Descritive of datasets. ............................................................................................ 55 

Table 5. Summary of test accuracy on 40 UCR/UEA datasets. .......................................... 62 

Table 6. Each method's total computational time (in minutes) on 40 UCR/UEA datasets. 75 

 

 





1 

 

Chapter 1 

Introduction 

Time series classification has become a crucial task within a subfield of machine 

learning. Unlike conventional classification problems where the order of attributes is 

unimportant, time series classification involves analyzing temporally related attributes, 

requiring the examination of comprehensive sequential data. The classification process 

involves predicting a class label for a sequence based on its measurable attributes or 

characteristic features. In turn, a classifier is utilized to distinguish between sequences that 

originate from different classes, with each sequence or time series having an equivalent set 

of extracted features. In recent years, many algorithms have been developed to enhance the 

predictive capabilities of state-of-the-art methods [1]. 

A range of representation algorithms has been specifically designed to extract 

characteristic features for time series classification. Those techniques can be categorized 

based on the fundamental data representation employed. Feature-based approaches depend 

on global features extracted through a straightforward pipeline and fed into an appropriate 

classifier. Dictionary-based methods transform real-valued time series into discrete symbol 

sequences, thereby exploiting the frequency of recurrent patterns. Interval-based approaches 

generate features from specific time segments within the series, revealing temporal 

characteristics of time series. Shapelet-based approaches identify phase-independent 

subsequences to effectively discriminate between time series. 

The current attractive method in the classification of time series is to utilize two or more 

representations. This methodology can be classified into four distinct groups. The first group 

is heterogeneous ensembles, where every component comprises a classifier designed based 
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on different representation types. For example, the hierarchical vote collective of 

transformation-based ensembles (HIVE-COTE 2.0) or HC2 [2], until this time, was 

considerably more accurate on average compared to other established state-of-the-art 

techniques. Another approach, the time series combination of heterogeneous and integrated 

embedding forest (TS-CHIEF) [3], is a classifier resembling HC2. TS-CHIEF consists of an 

ensemble of trees that incorporate distance, dictionary, and spectral-based features. 

Additionally, recent innovations include the hybrid dictionary-ROCKET architecture 

(Hydra) [4] that combines dictionary and convolution-based representations. The random 

convolutional kernel transform (ROCKET) [5] is a convolution-based model that generates 

numerous summary statistics using randomly initialized convolutional kernels and then 

builds a linear ridge classifier to identify the classes. 

The second group is tree based homogeneous ensembles that incorporate a specific 

representation within the tree nodes. One notable technique in this category is the proximity 

forest (PF) [6], which is an ensemble of proximity tree based classifiers. The third group is 

deep learning ensembles with embedded network representations. An example is 

InceptionTime [7], which combines five identical residual networks featuring inception 

modules. The last group utilizes convolution-based ensemble techniques to generate 

extensive new feature spaces, which are then analyzed using a linear classifier. One popular 

algorithm within the category is the ensemble of ROCKET models, also known as Arsenal 

[2].  

Recent investigations in ensemble techniques have received considerable interest due to 

their capacity to enhance accuracy by merging the advantages of two or more 

representations, which motivated our research. Therefore, in this study, we introduce 

MuRBE (Multiple Representation-Based Ensemble), a novel heterogenous ensemble 

approach for time series classification. MuRBE leverages diverse representation domains, 

including feature-based, dictionary-based, interval-based, and shapelet-based methods. The 

study makes a unique contribution by integrating various domain classifiers through a fuzzy 

rank-based ensemble structure, which has not previously been explored in the context of 

time series classification. The MuRBE aims to capture a wide range of temporal patterns and 

discriminatory characteristics, leading to improved classification performance. Exploiting 

complementary information from different representations makes it particularly effective to 

improve performance for many time series classification tasks. 
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Our proposed MuRBE structure incorporates four different representation domains. Two 

components are from our new proposed algorithms, such as feature-based autoregressive 

fractional integrated moving average with random forest (ARFIMA-RF) [P1] and 

dictionary-based symbolic aggregate approximation with stacking gated recurrent unit and 

convolutional neural networks (SAX-SGCNN) [P2]. We also take into consideration 

interval-based diverse representation canonical interval forest (DrCIF) [2] and shapelet-

based random dilated shapelet transform (RDST) [8]. 

1.1 Summary of Contributions 

The contributions described in this thesis can be summarised as follows:  

• We propose a novel heterogeneous ensemble that involves diverse representation 

domains and encapsulates predictions from different representations into a single 

prediction. We integrate various domain classifiers through a fuzzy rank-based 

ensemble structure, which is more flexible, dynamic, and adaptive to the weights 

of individual components based on their performance [P3]. We presented this 

contribution in Chapter 4. 

• In the first component of our heterogeneous ensemble method, we propose a unique 

feature-based time series classification that uses estimated autoregressive 

fractionally integrated moving average (ARFIMA) parameters for each time series. 

This approach makes an innovative contribution by employing ARFIMA 

coefficients to characterize time series patterns. This technique is able to derive a 

smaller set of parameters from the time series model than the length of its series, 

process sets of time series exhibiting long-range dependence (long-run memory), 

and process those time series with different lengths [P1]. The method is described 

in detail in Subchapter 4.1. 

• In the second component, we also introduce a novel dictionary-based time series 

classification framework, transforming time series into a sequence of words through 

symbolic aggregate approximation (SAX) and employing stacked deep learning as 

a classifier [P2]. It was initially inspired by the concept of deep neural networks in 

the field of natural language processing (NLP). We can go into more depth about 

this approach in Subchapter 4.2. 
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• Last but not least, we evaluate our approach in extensive empirical experiments on 

the different datasets and domains in Chapter 5. It shows that our approach is 

relatively fast and accurate compared to the other ensemble-based algorithms. 

1.2 Structure of This Work 

We have organized this thesis into six chapters. The remaining chapters are organized 

as follows:  

In Chapter 2, we present definitions, including basic notations and introductory concepts 

of time series classification. We also describe the comprehensive repository of time series 

datasets widely used in the field. We used the archive as a benchmark and conducted the 

experiments to compare them with the current state-of-the-art algorithms.  

Chapter 3 presents a detailed state-of-the-art review of the algorithms in time series 

classification. We present a literature review of the univariate time series classification 

research. In this chapter, we show different representations used in time series classification 

that align with our work, namely feature, dictionary, interval, and shapelet-based 

approaches, which were briefly mentioned in the introduction. We also include the chapter 

by presenting the state-of-the-art algorithms built based on ensemble-based approaches for 

benchmarking. 

Chapter 4 focuses on our proposed algorithms. We introduce a multiple representation-

based ensembles, a novel heterogeneous ensemble for time series classification, called 

MuRBE. We describe the structure of our approach, including new feature-based and 

dictionary-based classifiers. 

Chapter 5 describes the experimental setup used in our research, detailing the processes 

and datasets applied. The datasets utilized in this research were carefully selected to ensure 

their relevance for the experiments conducted. In this chapter, we also provide the results of 

the experiments, emphasizing key findings, scalability, and usability of our approach 

compared to the state-of-the-art methods.  

Chapter 7 concludes this thesis with a summary of the research, a list of overall 

contributions to knowledge, and a discussion of the limitations of this work. 
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1.3 List of Publications 
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the conference. 
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• [P2] Rauzan Sumara, Władysław Homenda, Witold Pedrycz, and Fusheng Yu. “A 
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Contribution: 

We introduced the integration of a dictionary-based technique with stacked ensemble 
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neural network (CNN), referred to as SGCNN, which has not been previously 

investigated in time series classification. Together with co-authors, we designed the 

algorithm, prepared the manuscript for publication, and presented it during the 

conference. 

Ministerial score: 140 

• [P3] Rauzan Sumara, Władysław Homenda, Witold Pedrycz, and Fusheng Yu. 

“Time Series Classification with MuRBE: The Multiple Representation-Based 

Ensembles,” under submission process. 



6 

 

Contribution: 

We introduced MuRBE (Multiple Representation-Based Ensemble), an innovative 

heterogeneous ensemble structure explicitly designed for time series classification. 

The MuRBE leverages diverse representation domains, including feature-based, 

dictionary-based, interval-based, and shapelet-based methods. 

Ministerial score: - 
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Chapter 2 

Time Series Classification Tasks 

Across various fields, it is common practice to measure a process at successive time 

points. The observed values typically exhibit interdependence rather than being independent 

and identically distributed. The data structure employed to store these measurements is 

known as a time series. It represents the value domain by storing each value as a real number 

and the time domain by organizing the values in ascending order. 

Time series are used in various data mining tasks [9], as presented in Figure 1. These 

include unsupervised tasks, such as clustering, generation, anomaly detection, segmentation, 

and subsequence matching, which analyze past and current data to inform decision-making. 

Predictive supervised tasks, such as classification, forecasting, and regression, infer the class 

of an unlabeled time series and predict future values. Based on the various tasks mentioned, 

time series classification, in particular, has gained more attention due to its potential in 

various fields. Time series classification is widely used in areas such as healthcare (e.g., 

diagnosing diseases based on patient vitals), industrial monitoring (e.g., detecting machine 

faults), and environmental studies (e.g., weather pattern recognition). In the following 

subsections, we explain the definition and comprehensive repository of time series datasets 

widely used in the field of time series classification. 
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Figure 1. Data mining tasks. 

2.1 Definitions 

Time series classification algorithms, similar to standard supervised classifiers, 

construct a classifier based on a collection of labeled time series data. Formal definitions of 

time series and time series classification are provided in Definition 2.1.1 and 2.1.2. For the 

purpose of understanding the work presented in this thesis, it is assumed that all time series 

originate from the UCR/UEA time series classification archive, a comprehensive repository 

of datasets extensively used in the field. An explanation and example will be provided in the 

subsequent Subchapter 2.2. 

Definition 2.1.1. Time Series 

A time series 𝑋 of length 𝑇 consists of an ordered set of 𝑇 pairs of time and value, denoted 

as 𝑋 = ⟨(1, 𝒙1), ⋯ , (𝑡, 𝒙𝑡), ⋯ , (𝑇, 𝒙𝑇)⟩, where 𝑡 represents the timestamp at 𝑡-th position in 

the sequence, with 𝑡 ∈ 1, ⋯ , 𝑇, and 𝒙𝑡 is a 𝐷-dimensional vector capturing the values of 𝐷 

real-valued variables or features at time 𝑡. Each value 𝒙𝑡 ∈ ℝ𝐷 is characterized by the 

components {𝑥𝑡
1, ⋯ , 𝑥𝑡

𝑑 , ⋯ , 𝑥𝑡
𝐷}. In many cases, it is assumed that the timestamps 𝑡 are 

equally spaced, allowing for a simplified notation where the timestamps are omitted, leading 

to a more compact representation of 𝑋 = ⟨𝒙1, ⋯ , 𝒙𝑡, ⋯ , 𝒙𝑇⟩. A univariate time series, or 

one-dimension, is a specific case in which only one variable is observed (𝐷 = 1). Therefore, 

𝑥𝑡 becomes a scalar, and the time series is represented as 𝑋 = ⟨𝑥1, ⋯ , 𝑥𝑡 , ⋯ , 𝑥𝑇⟩. 

Definition 2.1.2. Time Series Classification 

A labeled time series dataset 𝓢 comprises 𝑁 labeled time series indexed by 𝑛, where 𝑛 ∈

1, ⋯ , 𝑁. Each time series 𝑋𝑛 in 𝓢, where 𝑿 = ⟨𝑋1, … , 𝑋𝑛⟩, is associated with a corresponding 

Forecasting Classification Regression Clustering

Generation
Anomaly 
Detection

Segmentation
Subsequence 

Matching
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label 𝑦𝑛 ∈ 1, ⋯ , 𝐶, with 𝐶 representing the number of classes. This labeling can be expressed 

as 𝒚 = ⟨𝑦1, ⋯ , 𝑦𝑁⟩. Thus, a labeled time series dataset can be formalized as 𝓢 = (𝑿, 𝒚). 

In time series classification, a classifier is created by training it on a dataset containing 

labeled time series, which is then used to determine the class labels of time series that are 

not labeled. This classifier functions as a predictive tool that translates input variables into 

specific class labels. Figure 2 illustrates a time series classification problem, where the goal 

is to classify a new time series data point based on previously labeled examples. 

 

Figure 2. Example of time series classification. In this case, the objective is to differentiate 

between electroencephalogram (EEG) signals corresponding to an open-eye state (blue) and 

those indicative of seizure activity (red) [10]. 

2.2 UCR/UEA Time Series Classification Archive 

To understand time series classification more intuitively, let us consider the most 

important archive for univariate problems, which is from UCR/UEA [11]. The UCR/UEA 

time series classification archive is a comprehensive repository of time series datasets widely 

used in the field. Established through a collaboration between the University of California, 

Riverside (UCR) and the University of East Anglia (UEA), this archive is a benchmark for 

evaluating and comparing various time series classification algorithms. The datasets within 

the archive cover a diverse range of domains, including medicine, biology, engineering, and 

finance, providing researchers with a rich resource for developing and testing new 

classification methods. The archive has grown significantly, now containing over 100 

datasets of varying sizes and complexities [12]. 
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For the sake of providing additional examples, in this Subchapter, we will outline a 

collection of 8 datasets contained within this repository, for examples, organized by various 

domains, such as Image (ArrowHead), Spectro (Beef), ECG (ECG200), Motion (GunPoint), 

Sensor (Plane), Device (ScreenType), Spectrum (SemgHandGenderCh2), and Simulated 

(SyntheticControl) type of datasets. The complete list of datasets is presented in Table 4 in 

Chapter 5. Details can be found on the associated website 1. 

2.1.1 ArrowHead  

  

Figure 3. The example of the ArrowHead dataset obtained from [12]. 

Arrowhead data essentially consists of the complex contours that represent the various 

shapes and styles of arrowheads, which are crucial artifacts for understanding historical 

weaponry. The unique and distinct geometries of these projectile points are transmuted into 

a temporal series format through the application of a sophisticated technique known as an 

angle-based method [13], which facilitates a comprehensive analysis of their geometrical 

properties across time. The example of the angle-based method is shown in Figure 4. The 

categorization of these projectile points represents an essential area of exploration within the 

field of anthropology, as it allows scholars and researchers to gain comprehension of the 

cultural traditions and technological innovations of past societies.  

The various categories into which these projectile points are classified depend on 

specific shape distinctions, involving factors such as the presence, absence, and exact 

positioning of notches on the arrowheads [14]. The three distinct classes that have been 

established for these projectile points are designated with the appellations "Avonlea", 

"Clovis", and "Mix", each representing unique characteristics and historical significance 

associated with their respective forms. 

 
1 https://www.timeseriesclassification.com/ 
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Figure 4. Implementation of angle-based method on human skull image obtained from [13]. 

2.1.2 Beef 

Spectroscopic analysis plays a crucial role in the field of chemometrics, particularly in 

the categorization of diverse food types. This categorization procedure is paramount 

significance for guaranteeing food safety and upholding quality assurance benchmarks 

throughout the food industry. Accurately identifying and classifying food items is essential 

for combating food fraud, ensuring compliance with regulatory frameworks, and 

safeguarding consumer well-being.  

  

Figure 5. The example of the Beef dataset obtained from [15]. 

Within this context, the beef dataset serves as a valuable resource, encompassing five 

distinct classifications of beef spectrograms. These classifications include pure beef and beef 

adulterated with varying proportions of offal, representing the byproduct of animal 

processing. This distinction is crucial, as it facilitates the detection of potential adulteration, 

thereby protecting consumers from misleading labeling and preserving the integrity of meat 

products. Individuals interested in a more comprehensive understanding of the 

methodologies and findings within this dataset can refer to the original research article by 

[15], which investigates the identification of adulteration in cooked meat products using mid-

infrared spectroscopy. This dataset was initially presented in the time series classification 
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literature through a publication that examined transformation-based ensemble approaches 

for classifying time series data [16]. 

2.1.3 ECG200 

  

Figure 6. The example of the ECG200 dataset obtained from [17].  

This specific dataset was from academic research organized by [17]. The dataset looks 

closely at the complex electrical activity happening in a single heartbeat. It is divided into 

two main categories - a normal heartbeat, which is typical, and a myocardial ischemia, which 

is a serious condition where blood flow to the heart muscle is cut off. This classification not 

only helps identify heart problems early on, but it also lays the foundation for developing 

advanced tools to improve diagnosis and patient care. 

2.1.4 GunPoint 

This dataset features two participants, a female and a male, who perform two distinct 

hand movements. The first motion, designated as "Gun-Draw," involves the actors starting 

with their hands at their sides, then drawing a simulated firearm from a holster, aiming it for 

approximately one second, and returning it to the holster. The second motion, referred to as 

"Point", has the participants again beginning with their hands at their sides, but instead of 

drawing a weapon, they extend their index fingers to indicate or point at a target for around 

one second before reverting their hands to the resting position at their sides. Importantly, the 

dataset only includes measurements pertaining to the x-axis. Within the dataset, class 1 

corresponds to the "gun" motion, while class 2 represents the " no gun (pointing)" motion. 
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Figure 7. Illustration of gun and no gun (pointing) of the GunPoint dataset obtained from [18]. 

2.1.5 Plane 

The Plane dataset consists of seven aeroplanes, including Mirage, Eurofighter, F-14, 

Harrier, F-22, and F-15. Notably, the F-14 aeroplane exhibited two distinct shapes, one with 

the wings in a closed position and another with the wings extended, resulting in a total of 

seven shape classes, where each class contains 30 samples. 

 

 

(a) (b) (c) (d) (e) (f) (g) 

Figure 8. Illustration of Aeroplane: (a) Mirage, (b) Eurofighter, (c) F-14 wings closed, (d) F-14 

wings opened, (e) Harrier, (f) F-22, and (g) F-1 from Plane dataset obtained from [12]. 

2.1.6 ScreenType 

The ScreenType dataset was derived from data collected as part of a government-funded 

research initiative titled "Powering the Nation" [12]. The primary objective was to amass 

behavioral data regarding the way consumers utilize electricity within domestic 

environments, with the aim of reducing the carbon footprint of the United Kingdom. The 

dataset comprises measurements from 251 households, gathered at two-minute intervals 

over the duration of a month. Each sequence consists of 720 data points (representing 24 
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hours of readings captured every 2 minutes). The categories included are CRT Television, 

LCD Television, and Computer Monitor. 

 

Figure 9. The example of the ScreenType dataset obtained from [12]. 

2.1.7 SemgHandGenderCh2 

The dataset contains surface electromyography (sEMG) signals, which are the electrical 

activity generated by muscle contractions, either during resting states or throughout a range 

of movement-based activities. The data collection protocol involves a cohort of five healthy 

participants who are directed to execute a sequence of six distinct hand grasp maneuvers. A 

sophisticated 2-channel EMG system was used to acquire this data, which was approved for 

its accuracy and effectiveness in capturing muscular activity. The categorical classifications 

within this dataset are aligned with the gender of the participants engaged in the study. - 

class 1: the female gender - class 2: the male gender. This dataset is attributed to the research 

conducted by [19]. 

2.1.8 SyntheticControl 

This comprehensive dataset covers 600 unique samples of control charts synthetically 

produced through the complex methodologies described in the academic article [20]. Within 

this data collection, there are six distinct categories of control charts, which are listed as 

follows: 1. the normal category, which signifies standard operating conditions; 2. the cyclic 

category, characterized by recurrent patterns; 3. the increasing trend category, indicating a 

consistent upward movement; 4. the decreasing trend category, denoting a gradual decline; 

5. the upward shift category, which illustrates a sudden escalation in values; and 6. the 

downward shift category, representing a sudden reduction in values.  
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(a) (b) 

Figure 10. Time series example of (a) SemgHandGenderCh2 and (b) SyntheticControl datasets 

obtained from [12]. 

 

  



16 

 

  



17 

 

 

 

 

 

Chapter 3 

State-of-the-Art Overview 

This chapter outlines four outstanding approaches to time series classification: feature-

based, dictionary-based, interval-based, and shapelet-based. These approaches are the most 

frequently developed and researched to date, and most existing works have been conducted 

on univariate time series [1], [21]. We will also explain the ensemble-based method, which 

falls into the same group as the proposed approach. 

3.1 Feature-Based Approaches 

Feature-based classifiers have emerged as the prominent current approach. These 

approaches derive descriptive statistics from time series data to serve as input features for 

classification models. The features are obtained by transforming the series into a vector 

representation. This series-to-vector approach is commonly employed in a simple pipeline 

consisting of feature extraction followed by classifiers, as illustrated in Figure 11. 

 

Figure 11. Visualization of feature-based representation obtained from [21]. 
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3.1.1 TSFresh and FreshPRINCE 

Time series feature extraction based on scalable hypothesis tests (TSFresh) [22] provides 

nearly 800 time series characteristics, which can be utilized independently or refined through 

a feature selection process called FRESH. This method utilizes various hypothesis tests, 

including the Kendal rank test [23], Kolmogorov-Smirnov test [24], and Fisher's exact test 

[25], to evaluate features. The Benjamini-Yekutieli method [26] is applied to manage the 

false discovery rate that results from comparing numerous features and hypotheses all at 

once. However, the most effective result was obtained by utilizing the whole set of TSFresh 

features without feature selection, then built on a Rotation Forest classifier [27], which is the 

so-called FreshPRINCE [28]. Figure 12 shows the flowchart of feature-based algorithms and 

their relations. 

 

Figure 12. A summary of feature-based approaches and their relations. Our experiments 

include only those algorithms that are outlined with the thick border line. 

3.1.2 Catch22  

The highly comparative time-series analysis (hctsa) package [29] can explore more than 

7700 features from time series data. The canonical time series characteristics, known as 

Catch22 [30], consists of 22 hctsa features identified as the most distinctive from the 

complete set of features. The selection of Catch22 features was made based on an assessment 

using the UCR/UEA datasets. Initially, the hctsa features are reduced to eliminate those 

sensitive to the mean and variance of the series. Following this, the features were evaluated 

based on their predictive performance, leading to removing any features that fell below a 

certain threshold. A hierarchical clustering analysis was carried out on the correlation matrix 

to eliminate redundancy for the remaining features. From the clusters created, features are 

chosen, considering factors such as balanced accuracy, runtime efficiency, and 
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interpretability. The Catch22 features embrace various concepts, including descriptive 

statistics, linear correlations, and entropy. After employing the transform to the time series, 

Catch22 is then trained on a decision tree classifier [30]. 

3.1.3 Signatures 

Generalized signatures [31] use rough path theory to extract features. The signature 

transform method extracts features by capturing the interaction between values at multiple 

time points (ordered cross-moments). The pipeline is established with two augmentations. 

The first augmentation typically involves the original time series directly by adding a zero 

to the initial point of the time series. The second augmentation is by adding the timestamps 

of the series. A hierarchical windowing approach is applied to the augmented data, with the 

signature transform method being subsequently employed on each window. Each window's 

output is combined into a feature vector. These features are subsequently utilized to construct 

a Random Forest classifier. 

3.2 Dictionary-Based Approaches 

Dictionary-based methods find phase-independent subseries. Each subseries is 

transformed into words. Figure 13 shows how dictionary-based algorithms transform series 

into words and then use them to construct a classifier. First, splitting a time series into 

subseries (windowing).  Next, each real value from the subseries is converted into a sequence 

of symbols (discretization).  Next, create a sparse feature vector containing word count 

histograms.  Finally, build a machine learning classifier using these feature vectors. The 

dictionary-based methods are focused on word frequency and are called bag-of-words 

(BoW) methods. The most popular approach is the Bag of Patterns (BOP) [32]. It is a 

dictionary-based method that transforms series into words using symbolic aggregate 

approximation (SAX) based on three hyperparameters: length of window 𝑤, length of word 

𝑙, and size of alphabet 𝑎. Another example is SAX-vector space model (SAXVSM) [33], 

which blends the concept of SAX with the vector space model. Figure 14 shows dictionary-

based algorithms with their relations. 

Another example is the bag-of-SFA-symbols (BOSS) model [34]. The basis of the BOSS 

is a representation called symbolic Fourier approximation (SFA) [35]. The BOSS 

demonstrated strong performance in the initial comparative study. Using the previously 

outlined process, the individual BOSS classifier uses SFA to convert each sliding window 
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into a word. Next, a feature vector is created by counting word occurrences across all 

windows. A non-symmetric distance function and 1-Nearest Neighbor (NN) classifier are 

used to classify new instances. In experiments using a sample time series, the non-symmetric 

distance outperformed the Euclidean distance function [34]. The complete BOSS classifier 

is established from individual classifiers. The final classification for new instances is 

obtained by aggregating the predictions of the individual BOSS classifiers through a 

majority voting procedure. 

 

Figure 13. Transformation of a numeric time series into the sequence of words using (1) 

overlapping time windows, (2) discretizing the windows into words, and (3) creating the word 

histogram. 

In the bake-off, the BOSS was identified as one of the slower classifiers, making it 

impractical for timely evaluation on larger datasets. To address these scalability challenges, 

Contractable BOSS (cBOSS) [36] was introduced to modify the ensemble framework of 

BOSS while retaining its core transformations. The cBOSS employs a random selection 

process of individual BOSS classifiers, keeping only the top-performing classifiers for the 

final ensemble. Users can more effectively manage the classifier's training duration by 

including a training time limit through contraction. To ensemble individual BOSS classifiers, 

the cross-validation accuracy weighted probabilistic ensemble (CAWPE) scheme [37] is 

implemented. The changes introduced by cBOSS to the BOSS ensemble framework led to a 

substantial decrease in training times without losing accuracy. However, BOSS disregards 

the location of words within sequences, relying only on the frequency of patterns to 
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determine its classification. Therefore, SpatialBOSS (S-BOSS) [38] is introduced to 

incorporate temporal information within sequences. Spatial pyramids [39] is used for this 

purpose. Although this approach offers better accuracy than standard BOSS, the expanded 

parameter search space and larger feature vector make implementing it practically 

challenging. 

 

Figure 14. A summary of dictionary-based approaches and their relations. Our experiments 

include only those algorithms that are outlined with the thick border line. 

3.2.1 WEASEL 

Word extraction for time series classification (WEASEL v1.0) [40] algorithm works by 

identifying words that effectively distinguish between classes while eliminating less 

discriminative words. The classifier creates word count histograms based on the SFA 

procedure for different sizes of windows and lengths of words, along with bigram words 

from non-overlapping windows. Each word's discriminatory strength is evaluated using a 

Chi-squared test, and those below a threshold are removed. Last, a linear Ridge classifier is 

built on the feature space. Afterward, the dictionary-based WEASEL v2.0 [41] is introduced 

not only to enhance accuracy but also to resolve the issue of the extensive memory usage in 

WEASEL v1.0 by managing the search space using randomly parameterized SFA.  

This technique also employs a dilated sliding window to extract subseries with non-

consecutive values from a time series, where the dilation parameter maintains a fixed gap 

between each value. The SFA procedure is used to generate words. A variance-based feature 
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selection method is applied to enhance performance. WEASEL also leverages an 

information gain based method to obtain discriminative words and identify breakpoints that 

separate the classes. The final features are then utilized as input to build a linear Ridge 

classifier. 

3.2.2 TDE 

The temporal dictionary ensemble (TDE) [42] is a dictionary-based framework that 

combines cBOSS, WEASEL, and SpatialBOSS, along with new features. TDE is an 

ensemble of 1-NN classifiers that turns each series into a count word histogram utilizing 

SFA. From WEASEL, TDE adopts a method to find discretization breakpoints and track 

bigram frequencies from non-overlapping windows. It includes temporal information 

derived from the spatial pyramids, which is semilarly utilized in SpatialBOSS. Word counts 

from each spatial subseries are discovered separately and concatenated into histograms. The 

final classification is obtained by ensembling the predictions of the individual classifiers 

through the cBOSS ensemble framework containing a novel approach to sampling within 

the hyperparameter space. 

 

Figure 15. Identifying differences between time series classes. Analyzing feature statistics in 

subsequences of time series can reveal interpretable differences that distinguish labeled classes. 

In the example, two series from different classes having differences in linear trend, variance, 

and mean from distinct intervals. Quantifying these features and their discriminative time 

intervals provides insight into how and when the classes differ. 
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3.3 Interval-Based Approaches 

Interval-based methods [43] create phase-dependent fixed offset intervals and calculate 

summary statistics on the intervals. Most methods use random interval selection with the 

same interval locations for each series. The reason for using intervals is to reduce noise.  As 

illustrated in Figure 15, leveraging intervals can outperform utilizing features derived from 

the entire time series. The majority of recent interval-based methods commonly utilize a 

random forest classifier by randomizing the interval selection for each decision tree within 

the forest. Figure 17 shows interval-based algorithms along with their relations. 

3.3.1 TSF 

The Time Series Forest (TSF) [43] is a popular ensemble of interval-based decision 

trees. For each tree in the ensemble, random intervals are selected, and the same interval 

offsets are applied across all time series. The mean, variance, and slope from summary 

statistics are extracted for each interval and combined into a feature vector, as illustrated in 

Figure 16. This feature vector is then used to construct a time series tree, and the same 

interval-based features are employed for making predictions. The final ensemble prediction 

is determined by aggregating the predictions of the base classifiers through a majority vote. 

The base classifier, known as the time series tree, is a modified decision tree that evaluates 

whole attributes at each node and employs a metric called margin gain for splitting criteria. 

 

Figure 16. Overview of TSF: (a) random intervals are extracted from each time series, and (b) 

three statistical characteristics are calculated for the corresponding subsequences: the mean, 

standard deviation (SD), and slope. 
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After that, TSBF is introduced by [44], which stands for Time Series Bag-of-Features. 

It is a slight extension of TSF. Its fitting process involves the following steps: First, random 

intervals are created. Each of these intervals is then divided into multiple subintervals. 

Subsequently, three features akin to those in TSF are extracted. 

3.3.2 RISE 

The random interval spectral ensemble (RISE) [45] is an interval-based representation 

based on a decision tree ensemble that utilizes spectral characteristic features. In RISE, only 

one random interval is selected for each base classifier. Next, the periodogram and 

autoregression function are computed for each of these intervals. This information is then 

combined into a feature vector that serves as the input for training a decision tree. RISE was 

developed primarily for audio-related problems, where spectral features tend to be more 

discriminatory. 

 

Figure 17. A summary of interval-based approaches and their relations. Our experiments 

include only those algorithms that are outlined with the thick border line. 

3.3.4 STSF and R-STSF 

Supervised time series forest (STSF) [46] is also an interval-based algorithm that utilizes 

a supervised approach to extract relevant intervals from time series data. Once intervals are 

identified, seven simple summary statistics from a base series, periodogram, and first-order 

difference representation are generated for each interval. Those are the mean, variance, 

skewness, kurtosis, autocorrelation, maximum, and minimum values. These generated 
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feature vectors are then concatenated, and a decision tree ensemble model is built based on 

the combined feature set.  

Randomized STSF (R-STSF) [47] is established as an expansion of STSF, introducing 

more randomized components into its procedure. Instead of using all the features in the 

feature set, randomization is used not only in selecting the features for each tree but also in 

how these features are divided into nodes in the tree. An autoregressive representation is also 

extracted from each interval in addition to the previous ones. After features are extracted 

repetitively from each representation, the features are then employed through a pipeline to 

construct an Extra Trees classifier [48]. 

3.3.3 CIF 

The canonical interval forest (CIF) [49] represents an improved version of TSF, 

enhancing accuracy through the integration of more informative features. Similar to other 

interval-based approaches, CIF comprises the decision tree ensemble constructed from 

features extracted from phase-dependent intervals. CIF incorporates not only the mean, 

standard deviation, and slope but also involves the Catch22 features. In addition, the diverse 

representation of CIF (DrCIF) [2] is later introduced as an extended version of CIF. DrCIF 

adds two other representations:  periodograms, which are also similarly utilized in RISE and 

STSF, and first-order differences, similarly employed in STSF. A more detailed explanation 

of DrCIF is provided in Subchapter 4.3 DrCIF. 

3.3.5 QUANT 

The QUANT [50] is the minimalist interval-based method designed to efficiently 

capture and represent the characteristics of a time series using a single feature type, which is 

quantiles. QUANT uses four different representations to attain different characteristics of 

the time series data, such as raw time series, first-order differences, Fourier coefficients, and 

second-order differences. The core idea behind QUANT is to divide the time series into fixed 

dyadic intervals. The four representations can have 120 intervals each, or 480 in total. A 

feature vector is created from the resulting intervals from all four representations. The 

concatenated feature vector is then utilized to construct an Extra Trees classifier. 
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3.4 Shapelet-Based Approaches 

Shapelet-based methods, similar to dictionary-based methods, leverage subsequences 

extracted from the time series independent of the phase. Evaluation of a shapelet involves 

systematically sliding the subseries over the time series and then calculating the z-

normalized Euclidean distance between the shapelet and the subseries (window). The 

distance between a shapelet (𝑠) of length 𝑙 taken from a time series (𝑥) of the length 𝑇,  as 

𝑠 =  ⟨𝑥𝑡, 𝑥𝑡+1, … , 𝑥𝑡+𝑙−1⟩, where 1 ≤ 𝑡 ≤ 𝑇 − 𝑙 + 1, and 𝑙 ≤ 𝑇, can be defined as 

𝑑(𝑠, 𝑥) = |𝑠 − 𝑥𝑡,…,𝑡+𝑙|. Figure 18 provides a visual representation of the shapelet distance 

operation 𝑑(𝑠, 𝑥). 

Shapelets were initially introduced as a fundamental component in [51] and were 

integrated into a decision tree classifier, which is the so-called shapelet tree. Since the 

original shapelet was introduced, shapelet research has focused on four primary areas [21]: 

improving classification accuracy, addressing the computational demands of shapelet 

discovery, unifying research with convolutions and shapelets, and balancing optimization, 

randomization, and interpretability when finding shapelets. Figure 19 shows the relation for 

shapelet-based algorithms. 

 

Figure 18. An example of time series from class 1 (blue circles) and class 2 (red squares). The 

distances between all possible subseries and shapelets plotted as circles/squares. The candidate 

shapelet appears more similar to the series of class 1 while demonstrating more dissimilarity 

to the series of class 2, which displays a contrasting peak shape. 
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3.4.1 STC 

The shapelet transform classifier (STC) [52], [53] operates as a pipeline, identifying 

specific shapelets within the time series data that can best differentiate between classes. The 

potential shapelets are filtered based on the information gain. After the shapelets are 

discovered, they are used to convert the series into a vector of distances, which then retrieves 

the minimum distance to the shapelet from all possible subseries. A new feature vector is 

generated and subsequently used to construct a Rotation Forest classifier [27]. ST- HESCA 

is the first version of STC that extensively enumerates all shapelets from all training samples 

without filtering the shapelets. Essentially, HESCA was used as the base classifier, which 

was later changed to the name as CAWPE [37]. However, the algorithm does not scale well 

caused by its extensive evaluation process and weight assignments of base classifiers. 

 

Figure 19. A summary of shapelet-based approaches and their relations. Our experiments 

include only those algorithms that are outlined with the thick border line. 

3.4.2 RSF 

The random shapelet forest (RSF) [54] is an improvement of the shapelet tree to boost 

the computational speed and accuracy by randomization and ensemble. A bagging-based 

tree ensemble is implemented. In the context of randomization, univariate shapelets are 

randomly chosen from the training samples at each tree node. Each shapelet's length is also 
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randomly determined, constrained by pre-determined upper and lower limits. The candidate 

of shapelets is assessed using information gain, and the optimal shapelet is selected. 

Predictions for new data are made by majority vote. 

3.4.3 RDST 

The random dilated shapelet transform (RDST) [8] is considered an extension of STC that 

aims to improve the scalability and flexibility of the shapelet transform by incorporating 

dilation and randomization to avoid overfitting and computational complexity. Instead of 

searching for optimal shapelets from the training samples, RDST uses a unique approach by 

randomly selecting many shapelets from the training samples, generally an order of 

thousands to ten thousand, and trains a linear Ridge classifier on features derived from 

shapelets, details described in Subchapter 4.4 RDST. 

3.5 Ensemble-Based Approaches 

Ensemble-based algorithm (in some literature called as hybrid-based [9], [21]) utilizes 

a collection of classifiers, wherein the predictive output of each classifier may be weighted 

to optimize overall classification accuracy. A fundamental prerequisite for the efficacy of 

ensemble-based algorithms is the presence of diversity within the ensemble. Diversity can 

be realized through several strategies, including the classifiers involved in different 

representations, the selection of unique feature sets for each classifier, or the application of 

resampling techniques to the training samples for each classifier. Recently, there has been 

growing interest in using ensemble algorithms for time series classification [2], [34], [43], 

[55], primarily attributable to the capacity to enhance classification accuracy [2], [55]. Figure 

21 shows the flowchart of ensemble-based algorithms and their relations. 

Ensemble methods can be categorized into four distinct groups. The first group is 

heterogeneous ensembles, in which each component comprises a classifier designed based 

on a specific type of representation. For example, the collective of transformation-based 

ensembles (COTE) [55] is considerably more accurate than the individual components. The 

COTE is a collection of 35 classifiers from the time domain, shapelet, autocorrelation, and 

power spectrum representation. COTE has limitations on scalability. Therefore, the HIVE-

COTE (HC) algorithm [56] has been developed to resolve this issue, offering significantly 

better accuracy than COTE. Since it was first proposed in 2016, the HIVE-COTE has been 
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subject to minor revisions in HIVE-COTE version 1.0 (HC1). There are four base classifiers 

in the HC1, namely the TSF [43], RISE [45], cBOSS [34], and STC [52].  

In 2021, HC1 underwent another revision to improve scalability and include new ways 

of representing individual classifiers. Therefore, HIVE-COTE v2.0 (HC2) [2] was proposed; 

see its structure in Figure 20. HC2 involves several modifications: The cBOSS was replaced 

with TDE [42] as the dictionary-based classifier. Both TSF and RISE were also changed 

with DrCIF as the new interval-based classifier. Moreover, Arsenal, an ensemble of 

ROCKET classifiers, is introduced as a novel convolutional-based classifier. Instead of using 

cross-validation, an adapted form of out-of-bag error is used for test accuracy estimation, 

although the final model still utilizes all of the training samples. Notably, HC2 extends the 

capabilities of HC1 by enabling the classification of multivariate time series. 

 

Figure 20. A review of the HC2 ensemble structure obtained from [2]. 

Another approach in this group is the time series combination of heterogeneous and 

integrated embedding forest (TS-CHIEF) [3]. TS-CHIEF is a heterogeneous ensemble that 

takes the closest resemblance to HC. It comprises an ensemble of trees that includes distance, 

dictionary, and spectral features. The TS-CHIEF was developed to capture the benefits of 

utilizing multiple representations while avoiding the significant computational time 

associated with the original HC. Hybrid dictionary-ROCKET architecture (Hydra) [4] is also 

a heterogeneous ensemble model which utilizes convolution-based and dictionary-based 

representations. 
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The second group comprises tree based homogeneous ensembles that incorporate a 

specific representation within the tree nodes. One notable technique is the Proximity Forest 

(PF) [6], an ensemble built upon a proximity tree. Unlike a traditional decision tree, a 

proximity tree differs in each node's split criteria by randomly choosing distance measures 

from Elastic Ensembles (EE) [57] as the basis for splitting. PF uses the same 11 distance 

functions as EE, yet it surpasses the original EE algorithm in both accuracy and scalability. 

 

Figure 21. A summary of ensemble-based approaches and their relations. Our experiments 

include only those algorithms that are outlined with the thick border line. 

The third group is deep learning ensembles with embedded network representations. For 

instance, InceptionTime [7] utilizes an ensemble of five deep learning classifiers, all sharing 

an identical architecture based on sequential Inception modules [58]. Model diversity is 

established by randomizing the initial weight across the five models. As illustrated in Figure 

22, the network involves two successive residual blocks, each consisting of three inception 

modules. To mitigate the vanishing gradient problem, a shortcut connection links the input 

and output of each residual block. Following the residual blocks is a global average pooling 

(GAP) layer. In the end, a fully-connected layer with softmax activation function is 

implemented. 

The fourth group utilizes convolution-based ensemble techniques to generate extensive 

new feature spaces, which are then analyzed using a linear classifier. One popular algorithm 

within the category is the ensemble of ROCKET models, also known as Arsenal [2]. 
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ROCKET [5] operates as a pipeline. It generally creates thousands to ten thousands of 

convolutional kernels with randomized parameters. Input data undergoes transformation via 

these kernels by applying two distinct pooling functions: the maximum value and the 

proportion of positive values (PPV). Subsequently, the resulting features are concatenated 

to generate a comprehensive feature vector from entire kernels. 

 

Figure 22. A review of the InceptionTime structure obtained from [7]. 
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Chapter 4 

The MuRBE Structure 

This section provides a concise understanding of the MuRBE structure. The MuRBE is 

a heterogeneous ensemble having four component modules where each component 

originates from a unique representation. The component modules are: the ARFIMA-RF from 

the feature-based representation [P1]; SAX-SGCNN from the dictionary-based 

representation [P2]; the interval-based DrCIF [2]; and the shapelet-based RDST [8]. These 

were chosen due to being well performed in their domain representation [21]. The MuRBE 

adopts the fuzzy rank-based ensemble framework, which has recently gained attention for 

its effective meta-ensemble approach for different classifiers across different datasets, even 

in limited domain expertise or prior knowledge [59], [60], [61]. 

 

Figure 23. Illustration of the effect of the fuzzy-rank method compared to other schemes on a 

toy instance classification. 
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Figure 23 gives an overview of the fuzzy-rank ensemble that differentiates it from other 

schemes, i.e., majority voting, proportional voting, and weighted average probabilities. 

Instead of constructing a large number of weak classifiers, our approach focuses on 

developing a smaller set of effective classifiers and combining their outputs. We employ 

probability estimates rather than point predictions because they contain more information, 

which is crucial when using fewer classifiers to capture all available information.  

The structure of MuRBE is presented in Figure 24. The construction of the fuzzy-rank 

ensemble needs to obtain the probability estimates of each class from all the base classifiers. 

In the initial phase, to classify a new case, each component is trained independently using 

time series data and then required to generate each class's probability estimates (confident 

scores). Next, the probability estimates are then used to calculate fuzzy scores through 

nonlinear functions. Due to incorporating nonlinear functions to process decision scores, the 

fuzzy rank-based ensemble provides more flexible, dynamic, and adaptive weights for 

individual models based on their performance in specific contexts of the input space. Unlike 

traditional ensemble methods, e.g., simple average or weighted average rules, they often use 

fixed weights, which may not adapt well to varying conditions. The nonlinear functions, 

such as an exponential and hyperbolic tangent function, are often used due to their 

performance by constructing a tilted distribution to extenuate differences in classifiers [59], 

[61], [62]. 

Hence, to ensure effectiveness, we will employ the same nonlinear functions adopted 

from the previously cited reference. The probability estimates from the base classifiers will 

undergo transformation through two nonlinear functions: the exponential function and the 

hyperbolic tangent function. The hyperbolic tangent function acts as a reward function, while 

the exponential function acts as a decreasing or deviation function. Figure 25 displays the 

graphs of these functions. The 𝑥-axis represents the probability estimate of a class, and 𝑦-

axis represents the fuzzy score. The exponential function measures the deviation from its 

objective for a class with a given probability estimate. As the probability decreases, the 

deviation diminishes, ultimately approaching 0 when the probability estimate equals 1. In 

contrast, the hyperbolic tangent function assesses the reward allocated to a class. The reward 

increases as the probability rises, eventually reaching 1 when the probability estimate equals 

1. Consequently, using two nonlinear functions with varying concavities aims to yield 

complementary outcomes. 
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Figure 24. The structure of the proposed method. 

 

Figure 25. Visualizations of nonlinear functions utilized for calculating fuzzy ranks. 

After mapping the probability estimates into two functions with different concavities to 

produce nonlinear fuzzy ranks, we combine these ranks to produce a rank score. The rank 

score is determined based upon the product of deviation and reward corresponding to a 

specific probability estimate. In each base classifier, this procedure is executed, and the rank 

scores are aggregated to produce the final fused score. A higher probability estimate leads 

to a lower fused score, signifying a more accurate prediction. Therefore, the predicted class 

is associated with the smallest fused score. To enhance understanding of the concepts, we 

provide detailed steps for the proposed fuzzy rank-based structure as follows: 

First, we calculate all the probability estimates. The probability estimates of classes 

given by the base classifier are defined as 𝑝𝑘
𝑖 , where 𝑘 =  1, 2, … , 𝐶 is the number of classes 

and 𝑖 =  1, 2, … , 𝑀 is the number of base classifiers. Given that 𝑝𝑘
𝑖 ∈ [0,1], the probabilities 

[𝑝1
𝑖 , 𝑝2

𝑖 , … , 𝑝𝑐
𝑖 ] of 𝑐 classes on the base classifier-𝑖 essentially will satisfy the following 

condition,  
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∑ 𝑝𝑘
𝑖

𝐶

𝑘=1

= 1, ∀𝑖 = 1,2, … , 𝑀. 
(1) 

Since we utilized two nonlinear functions, let us consider [𝑟1
𝑖1, 𝑟2

𝑖1, … , 𝑟𝐶
𝑖1] and 

[𝑟1
𝑖2, 𝑟2

𝑖2, … , 𝑟𝐶
𝑖2], which are fuzzy ranks respectively computed using the hyperbolic tangent 

and the exponential functions expressed by 

𝑟𝑘
𝑖1 = 1 − 𝑡𝑎𝑛ℎ (

(𝑝𝑘
𝑖 − 1)

2

2
) , 𝑎𝑛𝑑 𝑟𝑘

𝑖2 = 1 − 𝑒𝑥𝑝 (−
(𝑝𝑘

𝑖 − 1)
2

2
).  (2) 

As a result, we can then determine the rank scores 𝑟𝑠𝑘
𝑖  through the multiplication of fuzzy 

ranks 𝑟𝑘
𝑖𝑗

. The fuzzy ranks are obtained from nonlinear functions by substituting the 

probability estimates from the base classifiers. The standard notation for calculating the rank 

scores is presented as follows, 

𝑟𝑠𝑘
𝑖 = ∏ 𝑟𝑘

𝑖𝑗

𝑆

𝑗=1

, ∀𝑘 = 1,2, … , 𝐶  and ∀𝑖 = 1,2, … , 𝑀, 
(3) 

where 𝑗 =  1, 2, … , 𝑆  is the number of chosen nonlinear functions, and the functions are 

bounded within [0, 1]. The product of the two nonlinear functions is denoted as 𝑟𝑠𝑘
𝑖 =

𝑟𝑘
𝑖1 × 𝑟𝑘

𝑖2. After that, the final fused score [𝑓𝑠1, 𝑓𝑠2, … , 𝑓𝑠𝐶] is calculated by the equation 

𝑓𝑠𝑘 = ∑ 𝑟𝑠𝑘
𝑖

𝑀

𝑖=1

, ∀𝑘 = 1,2, … , 𝐶. 
(4) 

The predicted class is selected based on the minimum value of the final fused score. This 

fused score serves as the ultimate value for each class, which can be expressed through the 

following formula, 

𝑦̂ = 𝑚𝑖𝑛
∀𝑘

𝑓𝑠𝑘. 
(5) 

Figure 26 illustrates an example of how our proposed ensemble method works. 
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Figure 26. An overview of the proposed ensemble structure for a three-class problem. 

The study makes a unique contribution by integrating various domain classifiers through 

a fuzzy rank-based ensemble framework, which has not previously been explored in the 

context of time series classification. The question that may arise is whether fuzzy rank-based 

structure outperforms other meta-ensemble schemes. To answer this curiosity, we conducted 

a comparison of the fuzzy ensemble to four well-known alternative schemes based on the 

framework described by [63], 

1. Max Vote (MV) 

2. Majority Vote (MaV) 

3. Proportional Vote (PV) 

4. Weighted Average Probabilities (WAP). 

We continued the evaluation by using a simple set of base classifiers. We include well-

known classifiers that are fast to build. These are logistic regression (LR), linear support 

vector machine (SVM), C4.5 decision tree (C4.5), 1-nearest neighbor (NN), and Naive 

Bayes (NB). In the comparison, all ensemble schemes utilize an identical set of base 

classifiers, so the only source of variation is the ensemble schemes. All base classifiers are 

built on 40 UCR/UEA time series classification datasets, described in Table 4. Therefore, 

we are totally investigating the ability of the ensembles to combine predictions with exactly 

the same available meta-information. 
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(a) Accuracy (b) Balanced Accuracy 

 

(c) F1 Score 

Figure 27. Critical difference (CD) diagrams for five ensemble schemes on 40 UCR/UEA 

datasets built using LR, SVM, C4.5, NN, and NB base classifiers. The ensemble schemes are 

MV, MaV, PV, WAP, and FuzzyRanks. 

We visualize comparisons with critical difference (CD) diagrams. The details of 

interpreting the diagram are explained in Subchapter 5.1 Experimental Setup. The CD 

diagram summarizes the average ranks of five ensembles, which are illustrated in Figure 27. 

These ensembles were evaluated using three performance metrics on a test split of 40 

UCR/UEA datasets. FuzzyRanks achieved the highest rank and occupied the top clique 

based on accuracy, balanced accuracy, and F1 score. Statistical evaluation reveals that 

FuzzyRanks significantly outperformed all other schemes in accuracy and balanced 

accuracy. For the F1 score, it is insignificantly different from the WAP, but it is significantly 

better than the others. Upon reviewing the results, it becomes evident that the fuzzy rank-

based scheme offers greater consistency than other schemes, as it constantly ranks in the top 

tier on all metrics. The result shows that FuzzyRanks is a practical initial choice for 

combining small sets of base classifiers in various problems. 

4.1 ARFIMA-RF 

Autoregressive fractionally integrated moving average with random forest (ARFIMA-

RF) is a feature-based method that uses the estimated parameters of the autoregressive 

fractionally integrated moving average (ARFIMA) as attributes. This model was developed 

to overcome the weaknesses of an autoregressive integrated moving average (ARIMA). In 
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time series, the ARFIMA process shares characteristics similar to those of a nonstationary 

ARIMA model. For example, the autocorrelation of a stationary ARFIMA(𝑝, 𝑑, 𝑞) model 

decays very slowly. At the same time, this phenomenon is similar to the sample 

autocorrelation of a nonstationary ARIMA time series addressed by [64]. In addition, we 

realized that periodograms of both stationary ARFIMA models and nonstationary ARIMA 

models diverge at zero frequency. Hence, there is often misspecification of models due to 

these similarities. For instance, there are cases where using integer differencing 𝑑, where 

𝑑 = 1,2,3, ⋯, could be too severe to be specified as a nonstationary ARIMA model and 

result in overdifferencing. As a result of the overdifferencing, a bias (error) with an inflated 

variance will result from parameter estimation. Reference [65] revealed that the ARFIMA 

model is not only able to overcome the misspecification but also to estimate a nonstationary 

time series model with fractional differencing. The ARFIMA model shares the same form 

of representation as the ARIMA with three hyperparameters, namely 𝑝, 𝑑, and 𝑞. A given 

time series {𝑥𝑡}𝑡=1
𝑇  is fitted to an ARFIMA model of order (𝑝, 𝑑, 𝑞) represented by a form 

𝛷𝑝(𝐵)𝛥𝑑𝑥𝑡 = 𝜃0 + 𝛩𝑞(𝐵)𝑒𝑡, 
(6) 

where 

Φ𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝, 
(7) 

Θ𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞, 
(8) 

𝛥𝑑 = (1 − 𝐵)𝑑, 
(9) 

and 𝐵 represents the backward shift operators defined by 𝐵𝑘𝑥𝑡 = 𝑥𝑡−𝑘. 

First, Φ𝑝(𝐵) is a polynomial of an autoregressive model of order 𝑝, denoted as AR(𝑝). 

It describes the current value depending on previous values and how strong is the 

relationship between those values through its parameters 𝜙1, 𝜙2, 𝜙3, … , 𝜙𝑝. The AR(𝑝) 

model is equivalent to the multiple regression model, but its predictors are time-lagged 

values of series rather than standard attributes expressed by the following equation, 

𝑥𝑡 = 𝜃0 + 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + ⋯ + 𝜙𝑝𝑥𝑡−𝑝 + 𝑒𝑡. 
(10) 
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Second, Θ𝑞(𝐵) is a polynomial of a moving average model of order 𝑞, denoted as 

MA(𝑞). Based on the moving average model, the current value of the series depends on the 

previous and current white noise errors or random shocks 𝑒𝑡. It is expressed through its 

parameters 𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑞. The random shocks at each point are assumed to be 

independently distributed with a zero mean and a constant variance normal distribution. We 

can express MA(𝑞) equation as follows, 

𝑥𝑡 = 𝜃0 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞. 
(11) 

Third, (1 − 𝐵)𝑑 is the fractional integration (FI). Integration means the action to 

represent the differencing of raw data series, e.g., overcoming long-range dependence (long-

run memory) or accommodating the nonstationary of a time series. The non-integer value of 

𝑑 is the nonseasonal differencing parameter. Due to the non-integer of the differencing 

parameter 𝑑, the fractional integration to the ARFIMA model is expressed by formal 

binomial series expansion. Therefore, the component (1 − 𝐵)𝑑 in the equation (9) can be 

written, 

𝛥𝑑 = (1 − 𝐵)𝑑,  

𝛥𝑑 = ∑ (
𝑑
𝑘

)

∞

𝑘=0

(−𝐵)𝑘, 
 

𝛥𝑑 =
𝑑! (−𝐵)0

0! (𝑑 − 0)!
+

𝑑! (−𝐵)1

1! (𝑑 − 1)!
+

𝑑! (−𝐵)2

2! (𝑑 − 2)!
+

𝑑! (−𝐵)3

3! (𝑑 − 3)!
+ ⋯ , 

 

𝛥𝑑 = 1 − 𝑑𝐵 −
1

2
(1 − 𝑑)𝑑𝐵2 −

1

6
(1 − 𝑑)(2 − 𝑑)𝑑𝐵3 − ⋯ . 

(12) 

Some characteristics of the fractional integration for different values of 𝑑 are presented 

as follows, 

• if 𝑑 = 0, the series 𝑥𝑡 is said to follow an ARMA process. 

• if 0 < 𝑑 < 0.5, then the stationary series 𝑥𝑡 is said to follow the ARFIMA process 

with the autocorrelations decaying very slowly or hyperbolically. 

• if 𝑑 > 0.5, then the series 𝑥𝑡 is said to follow a nonstationary ARFIMA process. 
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We can simply apply equation (12) to the form of ARFIMA. For illustration, the simplest 

ARFIMA(0, 𝑑, 0) is given in standard notation, 

𝛥𝑑𝑥𝑡 = 𝜃0 + 𝑒𝑡, (13) 

with the help of equation (12), we can obtain 

𝑥𝑡 − 𝑑𝑥𝑡−1 −
1

2
(1 − 𝑑)𝑑𝑥𝑡−2 −

1

6
(1 − 𝑑)(2 − 𝑑)𝑑𝑥𝑡−3 − ⋯ = 𝜃0 + 𝑒𝑡, 

 

𝑥𝑡 = 𝜃0 + 𝑑𝑥𝑡−1 +
1

2
(1 − 𝑑)𝑑𝑥𝑡−2 +

1

6
(1 − 𝑑)(2 − 𝑑)𝑑𝑥𝑡−3 + ⋯ + 𝑒𝑡, 

(14) 

and in the same way, we can expand to the higher order 𝑝 and 𝑞 of the ARFIMA model. 

Assuming 𝑥̇𝑡 = 𝛥𝑑𝑥𝑡 as a convenience, we can specifically provide the general 

representation of the ARFIMA(𝑝, 𝑑, 𝑞) after plugging in equations (7), (8), and (9) into (6) 

leads to 

𝑥̇𝑡 = 𝜃0 + 𝜙1𝑥̇𝑡−1 + 𝜙2𝑥̇𝑡−2 + ⋯ + 𝜙𝑝𝑥̇𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯

− 𝜃𝑞𝑒𝑡−𝑞 . (15) 

Using ARFIMA parameters as attributes for time series classification is a unique 

approach. These parameters describe the characteristics of the time series, such as the 

stochastic intensity of the impact of time-lagged values and previous white noise (innovation 

term) on the current value of the time series. By fitting an ARFIMA model for a given time 

series and using the estimated parameters as attributes, we can characterize classes between 

different time series based on their correspondence. The parameters used as attributes 

include 𝑑 (the fractional differencing), 𝜙1, 𝜙2, 𝜙3, … , 𝜙𝑝 (consecutive values of coefficients 

in the autoregressive model), 𝜃0 (the deterministic trend term), and 𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑞 

(coefficients from the moving average model). This approach has the advantage of producing 

a much smaller set of features than the length of the time series itself. The scheme of features 

from three ARFIMA components is generated as follows, 

• 𝑝𝑗 features from the AR component with the best discovered order, where 𝑝𝑗 ∈ [0, 𝑝], 

• 𝑞𝑗 features from the MA component with the best discovered order, where 𝑞𝑗 ∈

[0, 𝑞], and 
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• two features for the deterministic trend 𝜃0 and the fractional differencing 𝑑, 

where 𝑗 = 1,2,3, … , 𝑁 is the number of samples in a given dataset. As a result, we truncated 

a particular time series to at most 𝑝 + 𝑞 + 2 new features. We decided to discover the best 

configuration of ARFIMA in each time series where the values of 𝑝 and 𝑞 are the highest 

discovered order from the particular training set. If we obtain the best model configuration 

of 𝑝𝑗 lower than 𝑝 or 𝑞𝑗 lower than 𝑞, then irrelevant parameters are set to zero. We used the 

Hyndman-Khandakar algorithm to automatically identify the best configuration of the order 

of the ARFIMA model in specific interval values [66]. The algorithm simply implements a 

step-wise procedure for traversing the model space according to the Akaike information 

criterion (AIC) and then estimates the ARFIMA parameters. The generated features are then 

used in a pipeline to construct a random forest classifier for the classification process. 

4.2 SAX-GCNN 

We introduce symbolic aggregate approximation with stacking gated recurrent units and 

convolutional neural networks (SAX-SGCNN) as a dictionary-based time series 

classification framework. It transforms time series into a sequence of words using the SAX 

and employing stacked deep learning for classification. The SAX-SGCNN can be 

deconstructed into four distinct stages. The initial stage involves standardizing the time 

series. The second step focuses on transforming the time series into a symbolic 

representation. Afterward, the third step involves creating word sequences based on the 

symbolic representation and adding them to a corpus. The final step utilizes the generated 

corpus to train a stacked deep learning model. The subsequent sections provide a detailed 

exposition of the intricacies underlying this approach. 

4.2.1 Standardizing the time series 

The initial phase of the process involves preprocessing the data through z-

standardization. This step facilitates the data transformation by aligning the data with a 

standard normal distribution. A time series 𝑥𝑡 can undergo standardization to produce a time 

series 𝑧𝑡 of the same length. This standardization process is accomplished by applying the 

z-score formulation as follows, 
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𝑧𝑡 =
𝑥𝑡 − 𝜇𝑥

√𝜎𝑥
2

, 𝑡 = 1,2, … , 𝑇, (16) 

where 𝑧𝑡 denotes the standardized time series for the 𝑡-th element, 𝑥𝑡 represents the observed 

value of the time series at the 𝑡-th time point, 𝜇𝑥 is the mean of the time series, and 𝜎𝑥 

denotes the standard deviation of the time series.  

4.2.2 Converting numeric time series into symbolic time series 

In the subsequent step of the technique, we transform the numerical time series into a 

symbolic representation. We used the modified SAX procedure as a potential approach for 

our study. In a standard SAX procedure, piecewise aggregate approximation (PAA) is 

initially used to manipulate the number of dimensions in the time series [67]. However, we 

see this PAA representation increases the chances of missing vital parts in the time series 

data. Therefore, our proposed method employs a modified form of SAX transformation that 

omits the PAA step. We utilized the modified SAX technique, where a time series will have 

the same length as the sequence of symbols. 

The discretization process involves dividing the area under the Gaussian curve into 

distinct intervals, denoted as 𝐼𝑟 = {𝐼𝑟0, 𝐼𝑟1, 𝐼𝑟2, … , 𝑟𝑎−1, 𝐼𝑟𝑎}. These intervals are created by 

equally slicing the area using the chosen alphabet size (𝑎). The first interval, 𝐼𝑟0, represents 

negative infinity, while the last interval, 𝐼𝑟𝑎, represents positive infinity. It is important to 

note that each interval, 𝐼𝑟𝑗, is smaller than the subsequent interval, 𝐼𝑟𝑗+1, where 𝑗 is less than 

𝑎. If the time point falls inside a specified interval, the numerical time point is substituted 

with the designated alphabetical symbol. Using three alphabets, Figure 28 demonstrates the 

example process of transforming numerical time series into symbols. 

4.2.3 Generating words from symbolic time series 

The window size (𝑤), must be selected to extract words. The selection of the word 

length range is at the researchers’ discretion. The selection of the word length range is at the 

researchers’ discretion, intending to guarantee a sufficient number of words for training 

process, particularly when dealing with shorter time series. If 𝑛 represents the length of the 

symbolic time series, a word list consisting of 𝑛/𝑤 words is generated for each symbolic 

time series. The process of extracting words begins at the initial point of each symbolic time 

series with non-overlapping words. Let us consider the sequence of symbols consisting of 𝑤 
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elements as the window size. It is considered a single word. Subsequently, the window is 

shifted to the subsequent place in the symbolic time series to locate the subsequent word. 

Thus, the symbolic series is dissected to obtain a consecutive set of words, each having a 

length of 𝑤. The method of extracting words is illustrated in Figure 28 with a window size 

of 4. 

 

Figure 28. The concept of transforming numerical data into symbols and generating a sequence 

of words. 

4.2.4 Training deep learning model 

In this paper, we introduced the SGCNN model, which is a combination of GRU 

positioned at the top and followed by CNN layers. It is a modified architecture from the 

current NLP paper [68]. Modification of the architecture, presented in Figure 29, revolved 

around removing several layers and trying with different building blocks of the network to 

ensure that it is not prone to either overfitting or underfitting. 

 

Figure 29. Proposed stacked deep learning architecture. 
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Firstly, a 4-dimensional embedding layer is acquired through training to align with each 

word's surrounding context. This approach uses a dense vector representation where a vector 

represents the projection of the words or documents into a continuous vector space. The 

embedding layer also allows us to transform input data from a high-dimensional to a lower-

dimensional space. This is a way to facilitate more effective data processing and increased 

network understanding of the semantic relationships between words in the input sequence. 

With random weights as its starting point, the Embedding layer will discover an embedding 

for each word during training. 

Embeddings are then passed through GRU layers. The GRU is an upgraded form of the 

long short-term memory model (LSTM). There are three gates in the LSTM, namely an input 

gate, a forget gate, and an update gate. The GRU, on the other hand, is more straightforward 

than the LSTM because it contains only two gates, the reset and update gates. Furthermore, 

the GRU has fewer parameters than LSTM. It makes GRU simpler and faster to train than 

LSTM, especially with small data in time series classification. In the GRU, the update gate 

(𝑢𝑡) enables the neural network to determine the information from the previous hidden states 

(𝐻𝑡−1) used to describe the future. Moreover, the reset gate (𝑟𝑡) works to determine the 

information of 𝐻𝑡−1 to be forgotten, and it is used to construct the current memory 𝑐𝑡 for 

capturing the relevant information in 𝐻𝑡. The 𝑢𝑡, 𝑟𝑡, 𝑐𝑡 and 𝐻𝑡 have the following 

expressions, 

𝑢𝑡 = 𝜎(𝑊𝑢𝑧𝑡 + 𝑈𝑢𝐻𝑡−1), 𝑟𝑡 = 𝜎(𝑊𝑟𝑧𝑡 + 𝑈𝑟𝐻𝑡−1),

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑧𝑡 + 𝑟𝑡 ⊙ 𝑈𝑐𝐻𝑡−1), 𝐻𝑡 = (1 − 𝑧𝑡) ⊙ 𝐻𝑡−1 + 𝑧𝑡 ⊙ 𝑐𝑡.
 (16) 

where this model relies on learning parameter matrices 𝑊 and 𝑈, and a sigmoid activation 

function 𝜎(… ).  

Next, the 16 units of the GRU layer process this input to extract features for subsequent 

layers, followed by a CNN layer that incorporates the output generated by the GRU. A 

1 ×  1 kernel window size and 16 filters are utilized in the CNN layer. CNN is particularly 

designed for image classification tasks, where the network accepts multidimensional data. 

However, CNN is also used for time series analysis, which uses one-dimensional data. In 

the CNN layer, the kernel traverses the input data with a defined stride and calculates 

convolution for each position. After calculations, new vector values are returned and passed 

to further layers in the network. The objective of this process is to extract features. 
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Another important layer is global average pooling (GAP). It is usually present right after 

convolutional layers in the network’s architecture. The GAP does away with fully connected 

layers by averaging the embedding feature maps. This layer prevents overfitting since GAP 

does not have any parameters to optimize. Therefore, this layer replaces fully connected 

blocks of the neural network. Following that, there is a dense layer with 32 neurons, and a 

dropout layer with a rate of 0.1 is utilized to decrease the complexity of SGCNN. Applying 

the dropout technique is one of the easiest strategies for preventing overfitting in the model. 

Basically, it randomly excludes a certain number of nodes, usually in a percentage, to a given 

layer. When nodes are excluded, the model’s optimization process does not consider their 

calculated weights. By using this method, the possibility of the network experiencing 

overfitting is significantly reduced, which improves classification performance. Finally, this 

architecture uses a softmax activation function for the final layer. 

4.2.5 Choosing alphabet and window size 

Selecting the appropriate alphabet and window size is a vital step of this approach. In 

our previous study [P2], we observed that this proposed algorithm consumed a substantial 

amount of computational time because we explored a wide range of these hyperparameters, 

namely the alphabet size and word length. Therefore, the primary focus in this subsection is 

to identify the most effective hyperparameters in order to achieve better results and reduce 

the runtime significantly. This preliminary experiment aims to determine the appropriate 

alphabet and window size for SAX-SGCNN before integrating it into the MuRBE structure. 

This experiment was conducted on 40 UCR/UEA time series classification datasets, 

described in Table 4. 

We involved an extensive range of hyperparameters, such as alphabet size 𝑎  =

 {2, 4, 7, 9, 11, 12, 13, 15, 17, 18, 19, 20} and words of length 𝑤 = {2, 3, 5, 7, 8}. We 

performed experiments using the original training and testing splits. We constructed the 

model using an Adam optimizer with a loss function of a sparse categorical cross-entropy. 

It consisted of 100 epochs, with a 0.001 learning rate and a 16-batch size. 
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Figure 30. Test accuracy for selected datasets based on alphabet size and word length. 

Heatmap plots for a few chosen datasets are displayed in Figure 30, allowing us to 

examine the effects of alphabet size and word length on test accuracy. The figures illustrate 

the variations in accuracy that occur when we alter the word length 𝑤 and alphabet size 𝑎. 
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To achieve optimal outcomes, a bigger number of alphabets and longer word lengths are 

required for datasets such as ArrowHead, BeetleFly, Coffee, DistalPhalanxTW, ECG200, 

FordA, Meat, Plane, ScreenType and Worms. However, datasets such as Beef, GunPoint, 

MiddlePhalanxOutlineCorrect, SemgHandGenderCh2, and SyntheticControl need a lower 

number of the alphabet but greater word lengths. Additionally, it is noteworthy that optimal 

outcomes for various datasets are frequently attained while utilizing alphabet sizes of 2 and 

18 and word lengths of 7 and 8. Therefore, we will set 𝑎  =  {2, 18} and 𝑤 = {7, 8}, as 

default settings of SAX-SGCNN in MuRBE structure. 

4.3 DrCIF 

The diverse representation canonical interval forest (DrCIF) is the expansion of interval-

based CIF [49]. Since its introduction in 2021 as a new component of HC2, DrCIF represents 

a top interval-based ensemble classifier, demonstrating its effectiveness and capability to 

achieve high classification performance in various applications [2], [21]. Interval-based 

methods fundamentally rely on the extraction of phase-dependent subseries. The primary 

objective is to identify discriminatory characteristics across shifting intervals. DrCIF uses a 

time series tree as a base classifier, similar to the one used in TSF [43] that relies on 

information gain. DrCIF involves three series representations: the original time series, first-

order difference (similarly employed by STSF [46]), and periodograms (also utilized by 

RISE [45] and STSF [46]). Multiple intervals are chosen randomly. From those three series 

representations, a set of seven basic summary statistics is calculated for each interval: mean, 

standard deviation, slope, median, interquartile range, minimum, and maximum. DrCIF 

enhances this by adding the catch22 features [30], creating 29 potential features, denoted as 

𝑎. Assuming from three series representations, 𝑘 phase-dependent intervals with random 

positions and lengths are selected. The 𝑎 features are then computed for each interval. 

Subsequently, these features are concatenated into a vector with length of  3 ∙ 𝑎 ∙ 𝑘 for each 

series. The new features are obtained and then utilized to construct the tree. Table 1 provides 

the detailed pseudo algorithm for the DrCIF. 
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Table 1. Pseudo algorithm of DrCIF obtained from [2] 

DrCIF (A list of 𝑁 samples of length 𝑇, 𝓢 = (𝑿, 𝒚), noted that dimensions 𝐷 = 1 in 

univariate cases) 

Parameters: the number of trees (𝑟), the number of extracted features (𝑎), and the number 

of intervals for each representation (𝑘), (default: 𝑟 = 500, 𝑘 = 4 + √DrT/3, and 𝑎 = 10) 

1 Let 𝑭 = (𝑭1, … , 𝑭𝑟) represent the trees 

2 Let 𝑽 represent a 3 by 𝑁 by 𝐷 list of series, containing three series representations 

3 for 𝑖 ← 1 to 𝑟 do 

4 Let 𝑺 represent a empty list of 𝑁 samples (𝑠1, … , 𝑠𝑁) with 𝑎 ∙ 𝑘 features 

5 Let 𝑼 represent a list of 𝑎 randomly selected feature indices (𝑢1, … , 𝑢𝑎) 

6 for 𝑦 ← 1 to 3 do 

7 for 𝑗 ← 1 to 𝑘 do 

8 𝑏 ← rand(1, |𝑽𝑦| − 3) 

9 𝑙 ← rand(3, |𝑽𝑦|/2) 

10 𝑜 ← rand(1, 𝐷) 

11 for 𝑡 ← 1 to 𝑁 do 

12 for 𝑐 ← 1 to 𝑎 do 

13 𝑠𝑡,𝑎(𝑗−1)+𝑐 ← summaryStat(𝑢𝑐 , 𝑽𝑦, 𝑡, 𝑜, 𝑏, 𝑙) 

14 end for 

15 end for 

16 end for 

17 end for 

18 𝑭𝑖.buildTimeSeriesTree(𝑺, 𝒚) 

19 end for 
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4.4 RDST 

The random dilated shapelet transform (RDST) [8] has been recognized as a highly 

effective and leading shapelet-based classifier, particularly noted for its adaptability and 

performance in time series classification tasks [21]. RDST is considered an extension of STC 

that aims to improve the scalability and flexibility of the shapelet transform by incorporating 

dilation and randomization to avoid overfitting and computational complexity. Instead of 

searching for optimal shapelets from the training samples, RDST uses a unique approach by 

randomly selecting many shapelets from the training samples, generally on an order of 

thousands to ten thousand, and trains a linear Ridge classifier on features derived from 

shapelets. Furthermore, RDST utilizes two additional features alongside the minimum 

distance: it includes the location of the minimum distance and the frequency of shapelet 

occurrences based on a predetermined threshold 𝜆.  

For simplicity, given 𝑿 = ⟨𝑋1, … , 𝑋𝑁⟩ a set of time series with lengths of 𝑇 and 𝒚 =

⟨𝑦1, ⋯ , 𝑦𝑁⟩ their respective classes, RDST will take four input parameters: 𝑛𝑠ℎ𝑝 is the 

number of shapelets created, 𝐿 is a list of candidate for the shapelet lengths, 𝑃𝑛𝑜𝑟𝑚 is the 

probability of shapelets which can be standardized using z-normalization, and 

(𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥) ∈ [0,100] are the confident interval values that define the percentile bounds 

for threshold sampling 𝜆. To initialize shapelets (initializeShapelets) is described below: 

• the shapelet length 𝑙 will be randomly chosen from 𝐿, 

• the dilation 𝑑 is defined as 𝑑 = ⌊2𝑥⌋ where 𝑥 ~ 𝑈 (0, log2
𝑇

𝑙
), in a similar approach 

to ROCKET [5], 

• uniformly determine if the shapelets will apply a z-normalized distance, with a 

specified probability 𝑃𝑛𝑜𝑟𝑚, i.e., 𝑢 ~ 𝑈(0,1) ≤ 𝑃𝑛𝑜𝑟𝑚 

• extracting the shapelet values 𝑠 = ⟨𝑠1, ⋯ , 𝑠𝑙⟩ from a series 𝑋𝑖 = ⟨𝑥1, ⋯ , 𝑥𝑡  , ⋯ , 𝑥𝑇⟩, 

which is uniformly drawn from 𝑿, and allowing start point 𝑡 ∈  [1, 𝑇 −  (𝑙 −

 1)  ×  𝑑] in which 𝑡 is uniformly randomly selected. 

• lastly, to determine the value of 𝜆, we again select a different series 𝑋𝑖 from the same 

group as the one utilized for obtaining the shapelet values, then calculate distance 

vector 𝑑(𝑠, 𝑥), and uniformly draw a value 𝜆 within the percentile bounds 

(𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥) of the distance vector. 
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Once 𝑛𝑠ℎ𝑝 shapelets are initialized, we proceed to calculate the distance vector for every 

pair of time series and shapelets. The result of RDST is a feature matrix with a size of 

(𝑁, 3 ∙ 𝑛𝑠ℎ𝑝), which includes three features derived from the distance vector 𝑑(𝑠, 𝑥), namely 

the minimum distance (min), the location of the minimum distance (argmin), and the 

frequency of occurrences of the shapelet (𝑆𝑂). The occurrences of the shapelet can be 

defined as 𝑆𝑂 = ∑ 𝐼(𝑑(𝑠, 𝑥) ≤ 𝜆)
𝑇−(𝑙−1)×𝑑
𝑡 , with 𝐼(𝑇𝑟𝑢𝑒) = 1 and 𝐼(𝐹𝑎𝑙𝑠𝑒) = 0. Finally, 

RDST is built based on a Ridge classifier. The pseudo algorithm for the RDST method is 

given in Table 2. 

Table 2. Pseudo algorithm of RDST obtained from [8] 

RDST (A list of 𝑁 samples of length 𝑇, 𝓢 = (𝑿, 𝒚) ) 

Parameters: the number of shapelets (𝑛𝑠ℎ𝑝), a list of candidate for the shapelet lengths 

(𝐿), the proportion/probability of shapelets (𝑃𝑛𝑜𝑟𝑚), lower percentile (𝑃𝑚𝑖𝑛), upper 

percentile (𝑃𝑚𝑎𝑥),  (default: 𝑛𝑠ℎ𝑝 = 1000, 𝐿 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (2,
𝑇

2
) , 11) , 𝑃𝑛𝑜𝑟𝑚 = 0.8,

𝑃𝑚𝑖𝑛 = 5𝑡ℎpercentile, and 𝑃𝑚𝑎𝑥 = 10𝑡ℎpercentile) 

1 𝑺 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑆ℎ𝑎𝑝𝑒𝑙𝑒𝑡𝑠(𝑿, 𝒚, 𝐿, 𝑃𝑛𝑜𝑟𝑚, 𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥) 

2 𝑴 ← 𝑒𝑚𝑝𝑡𝑦𝐴𝑟𝑟𝑎𝑦(𝑁, 3 ∙ 𝑛𝑠ℎ𝑝) 

3 for 𝑖 ← 1 to 𝑛𝑠ℎ𝑝 do 

4 for 𝑗 ← 1 to 𝑁 do 

5 𝑚𝑖𝑛, 𝑎𝑟𝑔𝑚𝑖𝑛, 𝑆𝑂 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑋𝑗, 𝑆𝑖) 

6 𝑀𝑗,(𝑖×3) ← min 

7 𝑀𝑗,(𝑖×3)+1 ← argmin 

8 𝑀𝑗,(𝑖×3)+2 ← SO 

9 end for 

10 end for 

11 𝐵𝑢𝑖𝑙𝑑𝑅𝑖𝑑𝑔𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑴, 𝒚) 

 

  



52 

 

 

 

 

 

Chapter 5 

Experiments 

5.1 Experimental Setup 

We conducted an empirical experiment on 40 benchmark datasets from the UCR/UEA 

time series classification archive [12]. Each UCR/UEA dataset is already in a train and test 

split, which we use unchanged to make our results comparable to previous publications. We 

describe the datasets in Subchapter 5.2 Datasets. To maintain consistency with the existing 

literature, we used the default parameter configuration settings described in their references 

for the base classifiers in MuRBE, as described in Table 3. For the state-of-the-art methods 

described as competitors in the study, we used implementations available at 

https://www.aeon-toolkit.org/ or published by [21], in which the default settings for the 

parameter configuration were applied. 

The methods are evaluated based on accuracy, balanced accuracy, and F1 score. These 

approaches enable a thorough evaluation of a model's performance, considering its 

predictive capabilities, robustness to class imbalances, and the equilibrium between 

sensitivity and specificity. All reported values are predictions on the test split. Furthermore, 

we made comparisons by visualizing critical difference (CD) diagrams [69]. The CD 

displays the average ranks of each method over all datasets used and represents a horizontal 

bar that indicates cliques, meaning statistically insignificant differences between methods in 

rankings. These cliques are calculated using a Wilcoxon-post-hoc method with Holm 

correction with a significance level of 𝛼 = 5%. 
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Furthermore, multiple comparison matrix (MCM) is also used as a new evaluation tool 

proposed by [70]. The method is reportedly robust to maintain stability even if there are 

variations in classifier composition. In contrast to the CD diagram that relies on average 

ranks, the MCM utilizes average accuracy as its metric comparison. Furthermore, the MCM 

avoids using multiple test corrections, i.e., Bonferroni correction, in the context of p-value 

significance testing. The experiments were performed using Python 3.11.5 on a computer 

with an 8-core CPU, 16 GB of RAM, GeForce GTX 1660 Ti GPU, and the Windows 11 

operating system. For reproducibility, we have made the source code publicly available 

through the link provided 2. 

Table 3. Base classifier configurations in our experiments.  

Base Classifiers Configurations 

ARFIMA-RF 
max component 𝑝, 𝑞 = √3𝑇 , component 𝑑 ∈ [0,2], 500 trees, 

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = "𝑔𝑖𝑛𝑖" to measure the quality of a split. 

SAX-SGCNN 

alphabet size 𝑎  =  {2, 18}, word length 𝑤 = {7, 8}, Adam 

optimizer, loss function of a sparse categorical cross entropy, 

0.001 learning rate, 100 epochs,16-batch size, early stopping 

with three patience epochs. 

DrCIF 
500 trees, 4 + √rT/3 intervals per representation for each 

tree, 10 attributes per tree. 

RDST 

1000 shapelets, 𝑚𝑖𝑛 (𝑚𝑎𝑥 (2,
𝑇

2
) , 11) possible lengths for the 

shapelets, 0.8 proportion of shapelets, 5𝑡ℎ of lower percentile, 

10𝑡ℎ of upper percentile. 

 

 

 
2 github.com/rauzansumara/murbe-for-time-series-classification 
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5.2 Datasets 

In our analysis, we utilized 40 out of the 112 datasets available from the UCR/UEA time 

series classification archive. To ensure a comprehensive evaluation, we selected these 

datasets proportionally based on the number of available datasets within each type. This 

approach allowed us to maintain a balanced representation across different categories, 

enhancing the robustness of our study. 

For the Device datasets, we included three out of eight available options, explicitly 

focusing on LargeKitchenAppliances, ScreenType, and SmallKitchenAppliances. In the 

ECG category, we selected two of the six datasets, namely ECG200 and ECGFiveDays. This 

selection process was designed to capture a variety of data types while ensuring that critical 

datasets were represented in our evaluation. In the Image dataset category, we chose 12 out 

of the 32 available datasets, including ArrowHead, BeetleFly, BirdChicken, and several 

others, such as MedicalImages and ProximalPhalanxTW. Additionally, we included 5 out of 

the 17 Motion datasets, selecting CricketZ, GunPoint, InlineSkate, UwaveGestureLibraryX, 

and Worms. Furthermore, from the Sensor datasets, we took 8 out of the 20 available, 

featuring datasets like Earthquakes, FordA, and Lightning7. 

Lastly, we included three out of the eight Simulated datasets, specifically ShapeletSim, 

SyntheticControl, and TwoPatterns, along with five out of the eight Spectro datasets, 

including Beef and OliveOil. We also selected two out of the four Spectrum datasets, which 

were SemgHandGenderCh2 and SemgHandMovementCh2. However, we decided to exclude 

five types of datasets from our analysis due to their limited numbers, such as EOG and EPG, 

which only contained two datasets each, Hemodynamics with three datasets, and Power and 

Traffic, which had only one dataset each. 

The datasets also have diverse properties, such as different numbers of classes, lengths 

of series, numbers of samples in training and testing sets. For example, both the BeetleFly 

and ShapeletSim datasets have 20 samples in the training set but contain 20 and 180 samples 

in the testing set, respectively. In contrast, the ItalyPowerDemand dataset contains 1029 

samples in the testing set and only 67 samples in the training set. A detailed description of 

all datasets can be seen in Table 4. 



55 

 

Table 4. Descritive of datasets. 

No Type Dataset 
Number  

of classes 
Length 

Train set Test set 

n min max n min max 

1 Image ArrowHead 3 251 36 -2.2571 2.5540 175 -2.5494 2.4870 

2 Spectro Beef 5 470 30 -3.2900 3.7205 30 -3.3858 3.1514 

3 Image BeetleFly 2 512 20 -2.5168 2.5055 20 -2.5146 2.4080 

4 Image BirdChicken 2 512 20 -2.8248 2.1244 20 -3.0959 2.4416 

5 Spectro Coffee 2 286 28 -2.0642 2.1771 28 -2.1153 2.1042 

6 Motion CricketZ 12 300 390 -4.7583 11.9243 390 -5.1253 12.7068 

7 Image DistalPhalanxOutlineCorrect 2 80 600 -2.1589 2.4457 276 -2.1799 2.4602 

8 Image DistalPhalanxTW 6 80 400 -1.9945 2.0584 139 -1.8965 1.9998 

9 Sensor Earthquakes 2 512 322 -0.8858 7.8634 139 -0.7302 7.7281 

10 ECG ECG200 2 96 100 -2.6172 4.1991 100 -3.0145 4.1476 
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Table 4. Descritive of datasets (continued). 

No Type Dataset 
Number  

of classes 
Length 

Train set Test set 

n min max n min max 

11 ECG ECGFiveDays 2 136 23 -6.5112 5.4211 861 -7.1078 6.0328 

12 Image FiftyWords 50 270 450 -2.3543 5.0184 455 -2.5220 5.2813 

13 Sensor FordA 2 500 3601 -4.6177 5.0592 1320 -4.5565 4.3151 

14 Motion GunPoint 2 150 50 -2.3692 2.0534 150 -2.5000 2.3197 

15 Image Herring 2 512 64 -2.1856 2.1343 64 -2.2091 2.0742 

16 Motion InlineSkate 7 1882 100 -2.2635 4.3393 550 -2.5189 3.8272 

17 Sensor InsectWingbeatSound 11 256 220 -1.0819 6.4213 1980 -1.3050 6.5895 

18 Sensor ItalyPowerDemand 2 24 67 -1.9910 2.4248 1029 -2.3934 3.2939 

19 Device LargeKitchenAppliances 3 720 375 -1.5751 26.7955 375 -1.1066 25.7034 

20 Sensor Lightning7 7 319 70 -1.7812 17.4133 73 -1.7278 16.6406 



57 

 

Table 4. Descritive of datasets (continued). 

No Type Dataset 
Number  

of classes 
Length 

Train set Test set 

n min max n min max 

21 Spectro Meat 3 448 60 -1.5425 3.3902 60 -1.4932 3.3993 

22 Image MedicalImages 10 99 381 -2.3919 7.2224 760 -2.8312 8.0339 

23 Image MiddlePhalanxOutlineCorrect 2 80 600 -1.6602 2.0673 291 -1.7195 1.8756 

24 Image MiddlePhalanxTW 6 80 399 -1.7195 1.9245 154 -1.5848 1.7123 

25 Sensor MoteStrain 2 84 20 -8.4093 2.4684 1252 -8.6380 8.5444 

26 Spectro OliveOil 4 570 30 -1.0011 3.7188 30 -1.0002 3.7317 

27 Sensor Plane 7 144 105 -2.1133 2.9112 105 -2.1154 2.9240 

28 Image ProximalPhalanxOutlineCorrect 2 80 600 -1.4834 1.9029 291 -1.4424 1.8237 

29 Image ProximalPhalanxTW 6 80 400 -1.4834 1.9029 205 -1.4691 1.8496 

30 Device ScreenType 3 720 375 -2.9218 26.7955 375 -7.8336 26.7955 
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Table 4. Descritive of datasets (continued). 

No Type Dataset 
Number  

of classes 
Length 

Train set Test set 

n min max n min max 

31 Spectrum SemgHandGenderCh2 2 1500 300 0.0052 2238.5732 600 0.0121 1933.6200 

32 Spectrum SemgHandMovementCh2 6 1500 450 0.0052 2238.5732 450 0.0121 1933.6200 

33 Simulated ShapeletSim 2 500 20 -1.8113 1.8917 180 -1.8680 1.8737 

34 Device SmallKitchenAppliances 3 720 375 -5.0674 26.7951 375 -3.8745 26.7948 

35 Spectro Strawberry 2 235 613 -2.3281 3.6820 370 -2.1276 3.7227 

36 Simulated SyntheticControl 6 60 300 -2.4538 2.4120 300 -2.6191 2.6053 

37 Sensor Trace 4 275 100 -2.2211 3.9667 100 -2.3923 3.9373 

38 Simulated TwoPatterns 4 128 1000 -1.9393 1.9394 4000 -1.9332 1.9183 

39 Motion UWaveGestureLibraryX 8 315 896 -4.4383 4.4341 3582 -5.7091 6.5148 

40 Motion Worms 5 900 181 -4.3114 4.8591 77 -4.8873 4.1961 
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Figure 31. Each selected dataset showing a different range of time series, with the darker line 

representing the average time series. 

The selected datasets cover different properties and characteristic features of time series. 

Figure 31 shows ribbon plots that display the range of values in the time series for the entire 

dataset without concentrating on specific classes. The darker line indicates the average 

values for each dataset. In addition, we can see that the Beef dataset (Spectro type) has a 

downward pattern. The ScreenType (Device type) and SyntheticControl (Simulated type) 

datasets have a stationery pattern. Moreover, the ArrowHead (Sensor type), GunPoint 

(Motion type), and Plane (Sensor type) datasets show seasonal patterns. The 

SemgHandGenderCh2 dataset (Spectrum type) contains a time series with pulse and step 

characteristics. The ECG200 dataset (ECG type) has shift in structure patterns. Additionally, 

we do a visualisation of each class for each class within selected datasets, see Figure 32. 
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Figure 32. Selected datasets representing single example time series for each class. 

Violin plots shown in Figure 33 enable us to identify both a median and distribution of 

series within each class of selected datasets since it provides a combination of a box plot and 

a kernel density plot. The median of the class is represented by a horizontal line in the 

middle, and the distribution of the series can be identified from the kernel density plot. By 

simply examining how series are distributed within each category, we can infer that certain 

datasets, for example, GunPoint and SemgHandGenderCh2 datasets, seem easier to classify. 

In contrast, others, such as ECG200, Plane, and SyntheticControl, present more difficulties 

in classification. 



61 

 

 

Figure 33. Violin plots of selected datasets showing variability of time series in each class. 
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5.3 Results 

This Subchapter presents a detailed overview of the experimental results derived from 

this study. Firstly, we provide a comparison between MuRBE and its four base classifiers. 

Secondly, we also present the comparison between MuRBE and the other state-of-the-art 

methods in the literature. The performance metrics used in the comparison are accuracy, 

balanced accuracy, and F1 score. Thirdly, we assess the comparative performance using the 

CD diagrams and MCM. Finally, we also evaluate the scalability of MuRBE compared to 

the state-of-the-art approaches based on trade-offs between the average ranks, average 

accuracy, and total runtime. 

5.3.1 Comparison with base classifiers 

We provided a summary of the results from base classifiers and our proposed MuRBE 

in Table 5. As a result, the MuRBE shows a promising improvement over the base classifiers, 

demonstrating an approximate 1% increase in average accuracy. Average accuracies across 

the base classifiers ranged between 81.66% and 84.98%. Our core outcome is that the 

proposed method improves classification performance in terms of accuracy. 

Table 5. Summary of test accuracy on 40 UCR/UEA datasets. 

Accuracy ARFIMA-RF SAX-GCNN DrCIF RDST MuRBE 

Average 0.8448 0.8166 0.8498 0.8424 0.8572 

Standard Deviation 0.1367 0.1479 0.1309 0.1402 0.1332 

 

Figure 34. CD diagram of average ranks comparing the performance of MuRBE with base 

classifiers on test accuracy on 40 UCR/UEA datasets. 
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Figure 34 shows the CD diagram for MuRBE and its four components. The CD diagram 

displays that the MuRBE ranks one above all its components, demonstrating its superiority 

over four base classifiers based on average ranks. However, the performances of MuRBE, 

DrCIF, and ARFIMA-RF are in the clique (the solid horizontal bar links them), which 

indicates that there are no statistically significant differences. Additionally, SAX-SGCNN 

and RDST form the lowest clique.  

In contrast, the MCM depicted in Figure 35 shows that MuRBE is significantly better 

than its four components based on average accuracy. MuRBE obtained an average accuracy 

of approximately 1% more accurate than the four base classifiers. It is important to note that 

CD diagrams can be misleading and unstable in certain cases, particularly as the relative 

ordering can be highly sensitive to the models selected for the comparisons. To prevent this 

problem, reference [70] proposes the MCM. Unlike CD diagrams, instead of relying on the 

average rank, the MCM employs average accuracy as its ordering metrics. Given that the 

average score would not change even in situations altering the compenent (added or 

removed) of classifiers, unlike the average rank. Moreover, the probability value (p-value) 

in the MCM is calculated through the Bayesian signed-rank test rather than the p-value 

produced by the Wilcoxon signed-rank test in the CD diagram. That is why we performed 

both the CD diagram and MCM to get a comprehensive evaluation conclusion. 

The MCM illustrates pairwise comparisons among all algorithms, detailing differences 

in average accuracy, wins/ties/losses, and p-values. The heat map's colors illustrate the mean 

differences in accuracy. The red color signifies that the classifiers in the row generally 

outperform the ones in the column. Bold text is used to denote the significant differences. 

 

Figure 35. The MCM of average accuracy comparing the performance of MuRBE with base 

classifiers on the testing set on 40 UCR/UEA datasets. 
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5.3.1 Comparison with the state-of-the-art methods 

To evaluate our proposed approach, we compare it against two distinguished groups of 

state-of-the-art methods. The first group is from non ensemble-based approaches, consisting 

of feature-based (FreshPRINCE, Catch22, and Signatures), dictionary-based (WEASEL-D, 

and TDE), interval-based (TSF, STSF, RISE, R-STSF, and QUANT) and shapelet-based 

methods (STC, and RSF). The second group is ensemble-based approaches, such as HC2, 

TS-CHIEF, InceptionTime, PF, ROCKET, Hydra, and Arsenal, which fall into the same 

group as the approach proposed in our study. 

Figure 36 displays the CD diagram of MuRBE compared to all current state-of-the-art 

algorithms based on the average ranks on 40 UCR/UEA datasets. In the CD diagram, a lower 

average rank implies better accuracy of a particular method, and solid bars clique two or 

more methods for which there are no statistically significant differences. Compared to all 

algorithms, the proposed MuRBE is ranked within the top 5 classifiers, which is above 

QUANT, Arsenal, R-STSF, and ROCKET but below HC2. MuRBE is also not significantly 

different from HC2. This emphasizes the utility of fuzzy rank-based ensembles and proves 

the effectiveness of the favorable hierarchical structure. In order to get a comprehensive 

point of view, we provide CD diagrams and MCMs of our approach compared separately 

with two groups of approaches based on accuracy, balanced accuracy, and F1 score, depicted 

in Figure 38, 39, 40, and 41. 

 

Figure 36. The CD diagram based on the average ranks of all compared state-of-the-art 

methods on test accuracy on 40 UCR/UEA datasets. 
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Figure 37. Custom ridgeline plot illustrating distribution and quantiles of each algorithm on 

test accuracy on 40 UCR/UEA datasets. 
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Figure 37 illustrates the distribution of test accuracy and emphasizes specific percentiles 

from various approaches. Each approach is represented by an annotated horizontal strip 

where the shape of the distribution indicates how the accuracy scores are spread across 

different datasets. The plot describes key metrics that help interpret the performance of each 

model. The mean accuracy is marked by a black dot, which measures the central tendency 

of the accuracy scores for each method. The median accuracy is represented by an orange 

dot, indicating the point where half of the scores are higher and half are lower. Additionally, 

the 95% range of accuracy scores is shaded in green, illustrating where 95% of the accuracy 

values fall, showing the general spread of the model's performance. A lighter green shading 

marks the 80% range, indicating the narrower range where the central 80% accuracy values 

lie. 

 The models are ranked based on their accuracy, from top to bottom. Each method has 

a unique shape of accuracy distribution. The spread of the distribution curves provides 

insight into the consistency of each model's performance. A narrower curve suggests less 

variation in accuracy, indicating that the model performs consistently across different test 

sets, while a wider curve suggests greater variability in performance. Models like HC2, 

MuRBE, QUANT, and R-STSF show relatively narrow distributions, indicating stable 

performance, while others like RISE, Signatures, and TSF show a wider spread, suggesting 

more variability in accuracy. This ridgeline plot offers a comprehensive view of each model's 

performance, stability, and reliability. It allows for an easy comparison of not only the 

overall accuracy but also the spread and consistency of test results across multiple models. 

This helps identify which models are more reliable and which may have more fluctuating 

performance. 

Figure 38 shows the CD diagrams on (a) accuracy, (b) balanced accuracy, and (c) F1 

for MuRBE compared with the non ensemble-based algorithms on 40 UCR/UEA datasets. 

The ranking of MuRBE is on the top performing algorithms based on average ranks of 

accuracy, balanced accuracy, and F1 score. However, there are insignificant differences 

between MuRBE, QUANT, R-STSF, WEASEL-D, and FreshPRINCE. The STSF is also in 

a clique with ours as one of the top performing algorithms regarding balanced accuracy. 

However, in terms of accuracy, MuRBE is more accurate than QUANT on 20 datasets and 

less accurate on 13 datasets. MuRBE is also more accurate than R-STSF on 21 datasets and 
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less accurate on 15 datasets. Similarly, MuRBE is more accurate than FreshPRINCE on 23 

datasets and less accurate on 10 datasets. 

The MCM in Figure 39 summarises the performance of the classifiers based on average 

scores of (a) accuracy, (b) balanced accuracy, and (c) F1 score on 40 UCR/UEA datasets. A 

notable observation arises when comparing the CD diagrams in Figure 38 to this MCM. The 

ranking of MuRBE, QUANT, R-STSF, WEASEL-D, and FreshPRINCE is relatively aligned 

with results in the MCM. There are also statistically insignificant differences based on 

average values of all matrices, except WEASEL-D, which is statistically different from 

MuRBE in terms of accuracy. However, the ranking of Signatures, Catch22, RSF, and RISE 

algorithms seems different from the MCM. Despite RSF demonstrating a higher average 

score than RISE in the MCM, its ranking appears the lowest in the CD diagrams. This is 

because RISE achieved 38 wins while RSF only had 29 wins across 40 UCR/UEA datasets 

in terms of accuracy. We argue that using CD diagrams is better when we concentrate only 

on the number of wins or losses. 

  

(a) Accuracy (b) Balanced Accuracy 

 

(c) F1 Score 

Figure 38. CD diagrams of average ranks of (a) accuracy, (b) balanced accuracy, and (c) F1 

score of MuRBE in comparison with non ensemble-based approaches on the testing set on 40 

UCR/UEA datasets. 
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(a) Accuracy 

 

(b) Balanced Accuracy 

 

(c) F1 Score 

Figure 39. The MRM of average scores of MuRBE in comparison with non ensemble-based 

approaches on the testing set on 40 UCR/UEA datasets. 

We also perform the CD diagrams for MuRBE compared with the ensemble-based 

algorithms on 40 UCR/UEA datasets in Figure 40. For accuracy, it demonstrates that 

MuRBE is in second ranking after HC2, and they also form the highest clique based on 

average ranks of all three metrics. MuRBE is significantly better than other state-of-the-art 

methods, except HC2. PF and TS-CHIEF form the lowest clique not only in accuracy but 

also in balanced accuracy and F1 score. In addition, ROCKET looks relatively stable in the 

third position in all metrics. For balanced accuracy, MuRBE achieves the first ranking, 

indicating a better sensitivity-specificity tradeoff. MuRBE also has more pairwise wins than 

HC2 on 17 datasets but is less accurate on 15 datasets. However, the average balanced 

accuracy of HC2 is still higher than MuRBE. Regarding accuracy, MuRBE outperforms PF, 

TS-CHIEF, and Hydra on 24 datasets. Compared to Arsenal, MuRBE shows more accurate 

on 19 datasets but less accurate on 11 datasets. In contrast to HC2, MuRBE is only more 

accurate on 13 datasets but less accurate on 16 datasets. 
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Again, comparing the CD diagrams in Figure 40 with the MCM in Figure 41 reveals an 

important finding. For accuracy, MuRBE shows significant differences compared to TS-

CHIEF, ROCKET, Hydra, and PF in the MCM. However, the CD diagram shows not only 

them but also both Arsenal and InceptionTime, which are statistically significant differences 

against MuRBE. In the MCM, TS-CHIEF and PF consistently demonstrate significant 

differences compared to MuRBE for both balanced accuracy and F1 score. Nevertheless, 

only PF appears to be significantly different from MuRBE in the CD diagrams. The CD 

diagrams may seem misleading but they do provide meaningful insights. Despite TS-CHIEF 

demonstrating a higher average score than ROCKET in the MCM, its ranking correctly 

appears the second lowest in the CD diagrams due to fewer pairwise wins than ROCKET. It 

is important to know that the CD diagram utilizes average ranks to create an overall ranking 

of models across all datasets. The average rank shows how often a model wins or loses 

compared to others in a study. It does not take into account the degree of performance 

differences, which is why achieving a higher average accuracy does not necessarily lead to 

a higher rank. It only looks at wins or losses between pairs. Still, we believe the CD diagram 

is simple and easy to understand. 

  

(a) Accuracy (b) Balanced Accuracy 

 

(c) F1 Score 

Figure 40. CD diagrams of average ranks: (a) accuracy, (b) balanced accuracy, and (c) F1 score 

of MuRBE in comparison with other ensemble-based approaches on the testing set on 40 

UCR/UEA datasets. 
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(a) Accuracy 

 

(b) Balanced Accuracy 

 

(c) F1 Score 

Figure 41. The MCM of average scores of MuRBE in comparison with other ensemble-based 

approaches on the testing set on 40 UCR/UEA datasets. 

Boxplots displayed in Figure 42 illustrate how close the accuracy of MuRBE is 

compared to the current state-of-the-art methods. Top-ranking algorithms have a narrow 

interquartile range (IQR), few outliers, and average accuracy exceeding 80%. The boxplot 

also shows that HC2, InceptionTime, PF, ROCKET, Hydra, and Arsenal achieve medians 

that exceed the average scores, indicating a strong left skew. It signifies the presence of a 

few extremely low accuracy values, i.e., outliers, which stretch the boxplot distribution to 

the left. In contrast, TS-CHIEF and MuRBE indicate an absence of outliers in the 

distributions. 
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Figure 42. A custom box plot representing accuracy, balanced accuracy, and F1 score with 

average values (orange diamond) on the testing set on 40 UCR/UEA datasets. 

5.3.1 Pairwise comparison with other ensemble-based approaches 

Figure 43 shows a pairwise comparison of MuRBE to the group of ensemble-based 

competitors. A point represents the test accuracy of each dataset. The points located above 

the diagonal line indicate that a particular method's scores are higher than those of its 

competitor. In other words, the method positioned along the vertical 𝑦-axis outperforms the 

one on the horizontal 𝑥-axis. Dashed lines represent the median of the compared methods. 

Overall, MuRBE performs relatively better than other competitors. Most points of MuRBE 

are above the diagonal compared to the other ensemble-based methods. Nevertheless, our 

approach only has 13 wins (blue) but 16 losses (green) with 11 ties (orange) compared to 

HC2. 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 
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(g) 

Figure 43. Pairwise plot comparing the test accuracy of MuRBE with other ensemble-based 

approaches: (a) HC2, (b) Arsenal, (c) Hydra, (d) InceptionTime, (e) PF, (f) ROCKET, and (g) 

TS-CHIEF on 40 UCR/UEA datasets. 

5.3.1 Comparison across datasets and domain applications 

In this Subchapter, we inspect the performance of MuRBE across the types of 

application domains. We grouped datasets by the types to assess domain-dependent strengths 

or weaknesses. We treated the specified groups of the benchmark data types as defined by 

[12]. For this purpose, we only involve ensemble-based competitors such as HC2, TS-

CHIEF, InceptionTime, PF, ROCKET, Hydra, and Arsenal. Figure 44 illustrates the 

accuracy of MuRBE (black dotted line) against the seven ensemble-based classifiers (orange 

area). We arranged them by ascending accuracy on each type domain. In general, our 

proposed MuRBE demonstrates highly competitive performance across nearly all datasets. 

The MuRBE has a relatively high percentage of wins in the ECG, Image, Simulated, and 

Spectro domains groups. Overall, MuRBE outperformed the others in 18 (green) out of 40 

UCR/UEA datasets (tails included). Additionally, the proposed MuRBE obtained perfect 

accuracy in 9 cases, namely ECGFiveDays, BeetleFly, GunPoint, Plane, Trace, 

ShapeletSim, SyntheticControl, TwoPatterns, and Coffee. 

 

Figure 44. Test accuracy for MuRBE against the seven ensemble-based classifiers (Arsenal, 

HC2, Hydra, InceptionTime, PF, ROCKET, and TS-CHIEF) on 40 UCR/UEA datasets. The 
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orange area represents the seven classifiers' range of accuracies. Green dots indicate that 

MuRBE achieves the highest accuracy against the competitors, while red dots indicate the 

opposite. 

5.3.2 Scalability 

Although we believe accuracy is crucial, we also provide the runtime as another factor 

in assessing algorithm performance. Table 6 reviews the runtime for the classifiers evaluated 

in Figure 43. Several important caveats should be noted when interpreting these results. First, 

all algorithms, with the exception of InceptionTime, were executed on a single-thread CPU. 

Therefore, the runtime associated with InceptionTime is not directly comparable due to its 

operation on a GPU parallelization. Additionally, the maximum memory usage was not 

explicitly measured in this experiment, but it remained within the limit of the available 

memory on the CPU. It is important to know that the runtime would significantly decrease 

if the algorithms were threaded. 

Figure 45 shows the normalized training, testing, and total time of each algorithm 

mentioned in Table 6. According to training time, MuRBE is approximately half order of 

magnitude faster than the majority of the evaluated competitors, such as InceptionTime, PF, 

and HC2. MuRBE is also approximately two orders of magnitude faster than TS-CHIEF, 

except for Hydra, ROCKET, and Arsenal. Hydra is considered the fastest ensemble-based 

approach, two orders of magnitude faster than ours, and not even comparable to the training 

time of ROCKET. 

The majority of the datasets we used, most of the UCR/UEA datasets in general, had 

significantly more testing samples than training samples. For instance, InsectWingbeatSound 

dataset has only 256 samples in the training set, with 1980 samples in the testing set. Another 

example is ItalyPowerDemand dataset. It consists of 24 training samples with 1029 testing 

samples and several others such as MoteStrain, ShapeletSim, InlineSkate ECGFiveDays, etc. 

This has an impact on the performance of classifiers, such as ROCKET and Arsenal (since 

they are related), which are quick during training but may become slow during testing. 

ROCKET uses a massive number of kernels to convert the time series into a convolution-

based representation.  Each representation's computation is related not only to the number 

of kernels but also to the dataset's properties, i.e., the number of samples and time series 

length. For huge samples in datasets with extremely long series, ROCKET becomes 

computationally expensive. The disparity in sample sizes between train and test sets is 
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represented in ROCKET's testing time, which is half order of magnitude slower than 

InceptionTime. 

Table 6. Each method's total computational time (in minutes) on 40 UCR/UEA datasets. 

Methods Train Test Total 

Hydra 5.3748 4.7380 10.1128 

ROCKET 47.7818 57.6530 105.4349 

Arsenal 100.4870 113.9386 214.4256 

MuRBE 715.7258 361.3224 1077.0483 

InceptionTime 1269.9711 1.2560 1271.2272 

HC2 1618.8668 820.3320 2439.1988 

PF 2587.7520 773.1391 3360.8911 

TS-CHIEF 10842.5023 1187.6939 12030.1962 

  The PF, HC2, and TS-CHIEF are also expensive for prediction on the testing set. HC2 

and PF are approximately two times slower than MuRBE when predicting the testing set on 

40 UCR/UEA datasets. TS-CHIEF is three times slower than MuRBE at the testing set. In 

addition, InceptionTime is surprisingly faster than our proposed MuRBE, even comparable 

to Hydra in terms of testing time. However, InceptionTime's runtime benefits from GPU. It 

might be significantly slower without the GPU. According to [7], it is typically two times 

slower than HC2.  

Table 6 illustrates the runtime of algorithms when executed sequentially. As mentioned 

earlier, MuRBE is slower than some current state-of-the-art methods, notably ROCKET and 

Hydra. If computational speed becomes really essential than a small accuracy gain, MuRBE 

may not be the optimal choice. MuRBE is simply not intended for rapid training within 

seconds; therefore, we advise against using it in situations where models must be trained 

extremely quickly. MuRBE is designed to maintain relatively competitive run times 

compared to HC2, PF, or even TS-CHIEF, especially in small to medium-sized problems. 

We assume that when time is a serious factor, the problem is likely to be extremely large. 
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For instance, FordA is considered a large dataset. MuRBE requires approximately 372 

minutes for training, whereas Hydra and ROCKET need less than 2 and 15 minutes, 

respectively. The training time for HC2 is even worse, taking approximately 891 minutes to 

complete. 

  

(a) Train time (b) Test time 

 

(c) Total time (train + test) 

Figure 45. Ascending average values (orange diamond) of computational time on (a) train, (b) 

test, and (c) total on 40 UCR/UEA datasets by method (in minutes). The time is on a log scale. 

Furthermore, we provide the total runtime from different application domains, as shown 

in Figure 46. Most approaches require more time to process datasets from Sensor, Motion, 

and Spectrum domains. They are also relatively slow in processing Device and Image type 

domains. This is because most of the datasets from the domains contain large sample sizes 

in train and test sets, and it has a long time series. This significantly contributes to expensive 

computational runtime. In contrast, ECG, Simulated, and Spectro domains are quite fast to 

process. We can also observe that MuRBE is faster than HC2 in all types of application 

domains. 
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Figure 46. Pallete barplot of total computational time on 40 UCR/UEA datasets in each method 

per time series domain, such as Electric Devices, ECG, Image Outline, Motion Capture, Sensor 

Readings, Simulated, Spectrographs, and Spectrum. The time is on a log scale. 



78 

 

Figure 47 depicts the average accuracy rank against the runtime by the average accuracy 

for all compared algorithms, revealing a clear trade-off between performance and runtime. 

Considering these three factors, such as average ranks, average accuracy, and computational 

runtime, we can draw several conclusions. QUANT and Hydra are capable of training and 

predicting models for all 40 UCR/UEA datasets about 3 and 11 minutes, respectively, even 

without threading. If time efficiency is the primary concern, QUANT and Hydra would be 

an excellent starting point for the analysis. However, HC2 can be a worthy choice when 

prioritizing model accuracy over runtime. Alternatively, our proposed MuRBE is considered 

in between, which is half order of magnitude faster than HC2; it is neither highly 

computationally expensive nor very fast runtime, but it is considered moderate and useful 

when prioritizing both runtime and accuracy in small to medium cases. 

On the other hand, TS-CHIEF and PF are significantly slow and appear to scale less well 

than the other algorithms. Additionally, we also see ARFIMA-RF and DrCIF as the slow 

components within MuRBE. Due to exploring really high dimensional interval space [47], 

DrCIF requires a long running time. In ARFIMA-RF, the configuration of the 

hyperparameter setting might be the issue, even though we have already used the fastest 

algorithm to automatically identify the best configurations of the ARFIMA introduced by 

[66]. These could be areas for future improvement. 

 

Figure 47. A comparison of classifiers regarding average ranks, average accuracy, and total 

time on 40 UCR/UEA datasets. The total time is on a log scale. 
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Chapter 6 

Conclusions 

This chapter wraps up the thesis by highlighting the summary of the experiments and 

addressing the research's limitations. It considers the important findings and their impact on 

the field of time series classification. 

6.1 Summary 

We have presented MuRBE as a novel heterogenous ensemble structure explicitly 

designed for time series classification. MuRBE is constructed from four different 

representation domains; each proposed to capture different discriminatory features. Through 

comprehensive experiments and analyses, the main conclusions of this study can be outlined 

as follows: First, our study showed that MuRBE is significantly better than its base 

component classifiers. We are convinced that every component plays a crucial role in 

enhancing the overall performance. Our core outcome is that the proposed method proves to 

improve predictive capabilities. 

Second, among the seven ensemble-based algorithms, the proposed MuRBE 

outperforms them except for HC2. Notably, our approach secures the second position not 

only in average ranks but also in average accuracy among the current state-of-the-art 

techniques. Ours also forms the highest clique with HC2 based on the average rank of all 

three metrics. In terms of pairwise win/loss comparison, MuRBE shows more pairwise wins 

than PF, TS-CHIEF, Arsenal, and Hydra based on accuracy on 40 UCR/UEA datasets. 

MuRBE performs well in most ECG, Image, Simulated, and Spectro data types. We are 
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convinced that its main advantage can be attributed to the fact that discriminatory features 

are often present in multiple domains for many problems. 

In comparison with twelve non ensemble-based algorithms, the ranking of MuRBE is 

one of the top-performing algorithms based on the average ranks of all three metrics. Not 

only on ranking, MuRBE also has a bigger average accuracy compared to the most current 

algorithms, like QUANT, R-STSF, WEASEL-D, and FreshPRINCE. Even though they are 

statistically insignificant differences. Last, in terms of scalability, our model proved to be 

scalable enough than some other ensemble-based algorithms since MuRBE is faster than 

HC2, InceptionTime, PF, and TS-CHIEF, based on total runtime, except for Hydra, 

ROCKET, and Arsenal. Hydra is considered the fastest ensemble-based approach and two 

orders of magnitude faster than ours. 

6.2 Limitation 

Despite the contributions presented in this thesis, some limitations should be addressed.  

First, even though we have mentioned that our proposed method is somehow faster than 

some current state-of-the-art methods, we would still say a limitation lies in its 

computational demands. Our method is okay for small to medium-sized problems that 

involve tens to hundreds or about a thousand time series. However, training time can become 

excessively long for large-scale problems when involving tens of thousands of time series 

with tens of thousands in lengths or even more. The method might not be well scalable for 

such issues, but we believe there is potential for improvement. Future research could focus 

on enhancing individual components, particularly DrCIEF and ARFIMA, to enable more 

adaptive and intelligent reconfiguration settings for optimal runtime. Developing better 

strategies to address the issue will also be a key focus in future modifications. This could 

involve exploring more efficient algorithms to speed up the training process. Additionally, 

further investigation into the representation domains used by MuRBE could yield insights 

on how to leverage the discriminatory features present in the data better. 

Second, in evaluating classification algorithms, it is common practice to include not only 

the standard evaluation metrics but also more nuanced measures, such as the area under the 

receiver operating characteristic curve (AUROC) and the negative log-likelihood (NLL). 

These two additional metrics are sometimes used to provide complementary insights into 

model performance: AUROC enables the assessment of a model’s ability to rank positive 
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instances higher than negative ones across varying decision thresholds. At the same time, 

NLL offers a way to evaluate the quality of the predicted probability distributions through a 

loss function. Unlike metrics such as accuracy, balanced accuracy, or F1 score, which are 

directly computed from the confusion matrix, both AUROC and NLL rely on the probability 

estimates generated by the models rather than on discrete classification outcomes. These 

metrics capture different aspects of model ability, emphasizing ranking and probabilistic 

calibration beyond what is reflected in the confusion matrix. 

The proposed ensemble structure used a fuzzy rank-based framework, which inherently 

cannot provide proper probability estimates directly. This limitation arises primarily because 

the final fuzzy scores produced by the combination of tanh and exp functions are not 

bounded within the [0, 1] interval, unlike actual probability values that are strictly bounded 

in this range. Additionally, we argue that fuzzy sets, while sharing some similarities with 

probability, cannot be directly treated as probabilities, as they are fundamentally different 

mathematical constructs; however, they are not the same. Another issue lies in the decision 

rule of the ensemble, where the predicted class corresponds to the minimum final score, 

which contradicts the concept of probability, where the maximum probability estimate 

should be the predicted class. To address this discrepancy in the future, it is necessary to 

transform the final fuzzy rank scores into valid probability estimates via numerical inversion 

methods since no closed-form analytic inverse exists for the nonlinear function involved. 

Techniques such as the Newton-Raphson or bisection methods provide viable starting points 

for this inversion; alternatively, Brent’s method offers guaranteed convergence even with 

increased computational time. However, including this inversion step would certainly raise 

the model’s runtime, so it has been omitted from the current implementation. 

  



83 

 

  



84 

 

References 

 

[1] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series 

classification bake off: a review and experimental evaluation of recent algorithmic 

advances,” Data Min Knowl Disc, vol. 31, no. 3, pp. 606–660, May 2017, doi: 

10.1007/s10618-016-0483-9. 

[2] M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall, “HIVE-

COTE 2.0: a new meta ensemble for time series classification,” Mach Learn, vol. 110, 

no. 11–12, pp. 3211–3243, Dec. 2021, doi: 10.1007/s10994-021-06057-9. 

[3] A. Shifaz, C. Pelletier, F. Petitjean, and G. I. Webb, “TS-CHIEF: a scalable and 

accurate forest algorithm for time series classification,” Data Min Knowl Disc, vol. 34, 

no. 3, pp. 742–775, May 2020, doi: 10.1007/s10618-020-00679-8. 

[4] A. Dempster, D. F. Schmidt, and G. I. Webb, “HYDRA: Competing convolutional 

kernels for fast and accurate time series classification,” Mar. 25, 2022, arXiv: 

arXiv:2203.13652. doi: 10.48550/arXiv.2203.13652. 

[5] A. Dempster, F. Petitjean, and G. I. Webb, “ROCKET: exceptionally fast and accurate 

time series classification using random convolutional kernels,” Data Min Knowl Disc, 

vol. 34, no. 5, pp. 1454–1495, Sep. 2020, doi: 10.1007/s10618-020-00701-z. 

[6] B. Lucas et al., “Proximity Forest: an effective and scalable distance-based classifier 

for time series,” Data Min Knowl Disc, vol. 33, no. 3, pp. 607–635, May 2019, doi: 

10.1007/s10618-019-00617-3. 

[7] H. Ismail Fawaz et al., “InceptionTime: Finding AlexNet for time series classification,” 

Data Min Knowl Disc, vol. 34, no. 6, pp. 1936–1962, Nov. 2020, doi: 10.1007/s10618-

020-00710-y. 

[8] A. Guillaume, C. Vrain, and W. Elloumi, “Random Dilated Shapelet Transform: A 

New Approach for Time Series Shapelets,” in Pattern Recognition and Artificial 

Intelligence, vol. 13363, M. El Yacoubi, E. Granger, P. C. Yuen, U. Pal, and N. 

Vincent, Eds., in Lecture Notes in Computer Science, vol. 13363. , Cham: Springer 

International Publishing, 2022, pp. 653–664. doi: 10.1007/978-3-031-09037-0_53. 

[9] “Welcome to aeon,” aeon. Accessed: May 13, 2025. [Online]. Available: 

https://www.aeon-toolkit.org/en/v1.0.0/index.html 

[10] B. D. Fulcher, “Feature-based time-series analysis,” Oct. 02, 2017, arXiv: 

arXiv:1709.08055. doi: 10.48550/arXiv.1709.08055. 

[11] A. Bagnall et al., “The UEA multivariate time series classification archive, 2018,” Oct. 

31, 2018, arXiv: arXiv:1811.00075. doi: 10.48550/arXiv.1811.00075. 

[12] “Time Series Classification Website.” Accessed: Jan. 02, 2025. [Online]. Available: 

https://www.timeseriesclassification.com/ 

[13] “Converting images into time series for data mining.” Accessed: Apr. 18, 2025. 

[Online]. Available: https://izbicki.me/blog/converting-images-into-time-series-for-

data-mining.html 



85 

 

[14] A. Gupta, H. P. Gupta, B. Biswas, and T. Dutta, “Approaches and Applications of Early 

Classification of Time Series: A Review,” IEEE Trans. Artif. Intell., vol. 1, no. 1, pp. 

47–61, Aug. 2020, doi: 10.1109/TAI.2020.3027279. 

[15] O. Al-Jowder, E. K. Kemsley, and R. H. Wilson, “Detection of Adulteration in Cooked 

Meat Products by Mid-Infrared Spectroscopy,” J. Agric. Food Chem., vol. 50, no. 6, 

pp. 1325–1329, Mar. 2002, doi: 10.1021/jf0108967. 

[16] A. Bagnall, L. Davis, J. Hills, and J. Lines, “Transformation Based Ensembles for Time 

Series Classification: SIAM International Conference on Data Mining,” May 2012, pp. 

307–319. 

[17] R. T. Olszewski, “Generalized feature extraction for structural pattern recognition in 

time-series data,” phd, Carnegie Mellon University, USA, 2001. 

[18] H. A. Dau et al., “The UCR time series archive,” IEEE/CAA J. Autom. Sinica, vol. 6, 

no. 6, pp. 1293–1305, Nov. 2019, doi: 10.1109/JAS.2019.1911747. 

[19] C. Sapsanis, G. Georgoulas, A. Tzes, and D. Lymberopoulos, “Improving EMG based 

classification of basic hand movements using EMD,” in 2013 35th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC), Jul. 2013, pp. 5754–5757. doi: 10.1109/EMBC.2013.6610858. 

[20] R. Alcock, “Time-Series Similarity Queries Employing a Feature-Based Approach,” 

1999. Accessed: Apr. 19, 2025. [Online]. Available: 

https://www.semanticscholar.org/paper/Time-Series-Similarity-Queries-Employing-

a-Approach-Alcock/8f2efe63784f234a70cd8a1209a8436c2ef04089 

[21] M. Middlehurst, P. Schäfer, and A. Bagnall, “Bake off redux: a review and 

experimental evaluation of recent time series classification algorithms,” Data Min 

Knowl Disc, vol. 38, no. 4, pp. 1958–2031, Jul. 2024, doi: 10.1007/s10618-024-01022-

1. 

[22] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr, “Time Series FeatuRe 

Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package),” 

Neurocomputing, vol. 307, pp. 72–77, Sep. 2018, doi: 10.1016/j.neucom.2018.03.067. 

[23] M. G. Kendall, “A New Measure of Rank Correlation,” Biometrika, vol. 30, no. 1/2, p. 

81, Jun. 1938, doi: 10.2307/2332226. 

[24] F. J. Massey, “The Kolmogorov-Smirnov Test for Goodness of Fit,” Journal of the 

American Statistical Association, vol. 46, no. 253, pp. 68–78, Mar. 1951, doi: 

10.1080/01621459.1951.10500769. 

[25] R. A. Fisher, “On the Interpretation of χ 2 from Contingency Tables, and the 

Calculation of P,” Journal of the Royal Statistical Society, vol. 85, no. 1, p. 87, Jan. 

1922, doi: 10.2307/2340521. 

[26] Y. Benjamini and D. Yekutieli, “The control of the false discovery rate in multiple 

testing under dependency,” Ann. Statist., vol. 29, no. 4, Aug. 2001, doi: 

10.1214/aos/1013699998. 

[27] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, “Rotation Forest: A New Classifier 

Ensemble Method,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1619–

1630, Oct. 2006, doi: 10.1109/TPAMI.2006.211. 

[28] M. Middlehurst and A. Bagnall, “The FreshPRINCE: A Simple Transformation Based 

Pipeline Time Series Classifier,” in Pattern Recognition and Artificial Intelligence, vol. 



86 

 

13364, M. El Yacoubi, E. Granger, P. C. Yuen, U. Pal, and N. Vincent, Eds., in Lecture 

Notes in Computer Science, vol. 13364. , Cham: Springer International Publishing, 

2022, pp. 150–161. doi: 10.1007/978-3-031-09282-4_13. 

[29] B. D. Fulcher and N. S. Jones, “hctsa : A Computational Framework for Automated 

Time-Series Phenotyping Using Massive Feature Extraction,” Cell Systems, vol. 5, no. 

5, pp. 527-531.e3, Nov. 2017, doi: 10.1016/j.cels.2017.10.001. 

[30] C. H. Lubba, S. S. Sethi, P. Knaute, S. R. Schultz, B. D. Fulcher, and N. S. Jones, 

“catch22: CAnonical Time-series CHaracteristics: Selected through highly 

comparative time-series analysis,” Data Min Knowl Disc, vol. 33, no. 6, pp. 1821–

1852, Nov. 2019, doi: 10.1007/s10618-019-00647-x. 

[31] J. Morrill, A. Fermanian, P. Kidger, and T. Lyons, “A Generalised Signature Method 

for Multivariate Time Series Feature Extraction,” Feb. 06, 2021, arXiv: 

arXiv:2006.00873. doi: 10.48550/arXiv.2006.00873. 

[32] J. Lin, R. Khade, and Y. Li, “Rotation-invariant similarity in time series using bag-of-

patterns representation,” J Intell Inf Syst, vol. 39, no. 2, pp. 287–315, Oct. 2012, doi: 

10.1007/s10844-012-0196-5. 

[33] P. Senin and S. Malinchik, “SAX-VSM: Interpretable Time Series Classification Using 

SAX and Vector Space Model,” in 2013 IEEE 13th International Conference on Data 

Mining, Dallas, TX, USA: IEEE, Dec. 2013, pp. 1175–1180. doi: 

10.1109/ICDM.2013.52. 

[34] P. Schäfer, “The BOSS is concerned with time series classification in the presence of 

noise,” Data Min Knowl Disc, vol. 29, no. 6, pp. 1505–1530, Nov. 2015, doi: 

10.1007/s10618-014-0377-7. 

[35] P. Schäfer and M. Högqvist, “SFA: a symbolic fourier approximation and index for 

similarity search in high dimensional datasets,” in Proceedings of the 15th 

International Conference on Extending Database Technology, Berlin Germany: ACM, 

Mar. 2012, pp. 516–527. doi: 10.1145/2247596.2247656. 

[36] M. Middlehurst, W. Vickers, and A. Bagnall, “Scalable Dictionary Classifiers for Time 

Series Classification,” in Intelligent Data Engineering and Automated Learning – 

IDEAL 2019, vol. 11871, H. Yin, D. Camacho, P. Tino, A. J. Tallón-Ballesteros, R. 

Menezes, and R. Allmendinger, Eds., in Lecture Notes in Computer Science, vol. 

11871. , Cham: Springer International Publishing, 2019, pp. 11–19. doi: 10.1007/978-

3-030-33607-3_2. 

[37] J. Large, J. Lines, and A. Bagnall, “A probabilistic classifier ensemble weighting 

scheme based on cross-validated accuracy estimates,” Data Min Knowl Disc, vol. 33, 

no. 6, pp. 1674–1709, Nov. 2019, doi: 10.1007/s10618-019-00638-y. 

[38] J. Large, A. Bagnall, S. Malinowski, and R. Tavenard, “On time series classification 

with dictionary-based classifiers,” IDA, vol. 23, no. 5, pp. 1073–1089, Oct. 2019, doi: 

10.3233/IDA-184333. 

[39] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of Features: Spatial Pyramid 

Matching for Recognizing Natural Scene Categories,” in 2006 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR’06), New 

York, NY, USA: IEEE, 2006, pp. 2169–2178. doi: 10.1109/CVPR.2006.68. 

[40] P. Schäfer and U. Leser, “Fast and Accurate Time Series Classification with 

WEASEL,” in Proceedings of the 2017 ACM on Conference on Information and 



87 

 

Knowledge Management, Singapore Singapore: ACM, Nov. 2017, pp. 637–646. doi: 

10.1145/3132847.3132980. 

[41] P. Schäfer and U. Leser, “WEASEL 2.0 -- A Random Dilated Dictionary Transform 

for Fast, Accurate and Memory Constrained Time Series Classification,” 2023, doi: 

10.48550/ARXIV.2301.10194. 

[42] M. Middlehurst, J. Large, G. Cawley, and A. Bagnall, “The Temporal Dictionary 

Ensemble (TDE) Classifier for Time Series Classification,” in Machine Learning and 

Knowledge Discovery in Databases, vol. 12457, F. Hutter, K. Kersting, J. Lijffijt, and 

I. Valera, Eds., in Lecture Notes in Computer Science, vol. 12457. , Cham: Springer 

International Publishing, 2021, pp. 660–676. doi: 10.1007/978-3-030-67658-2_38. 

[43] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest for classification 

and feature extraction,” Information Sciences, vol. 239, pp. 142–153, Aug. 2013, doi: 

10.1016/j.ins.2013.02.030. 

[44] M. G. Baydogan, G. Runger, and E. Tuv, “A Bag-of-Features Framework to Classify 

Time Series,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2796–2802, 

Nov. 2013, doi: 10.1109/TPAMI.2013.72. 

[45] M. Flynn, J. Large, and T. Bagnall, “The Contract Random Interval Spectral Ensemble 

(c-RISE): The Effect of Contracting a Classifier on Accuracy,” in Hybrid Artificial 

Intelligent Systems, vol. 11734, H. Pérez García, L. Sánchez González, M. Castejón 

Limas, H. Quintián Pardo, and E. Corchado Rodríguez, Eds., in Lecture Notes in 

Computer Science, vol. 11734. , Cham: Springer International Publishing, 2019, pp. 

381–392. doi: 10.1007/978-3-030-29859-3_33. 

[46] N. Cabello, E. Naghizade, J. Qi, and L. Kulik, “Fast and Accurate Time Series 

Classification Through Supervised Interval Search,” in 2020 IEEE International 

Conference on Data Mining (ICDM), Sorrento, Italy: IEEE, Nov. 2020, pp. 948–953. 

doi: 10.1109/ICDM50108.2020.00107. 

[47] N. Cabello, E. Naghizade, J. Qi, and L. Kulik, “Fast, accurate and explainable time 

series classification through randomization,” Data Min Knowl Disc, vol. 38, no. 2, pp. 

748–811, Mar. 2024, doi: 10.1007/s10618-023-00978-w. 

[48] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach Learn, vol. 

63, no. 1, pp. 3–42, Apr. 2006, doi: 10.1007/s10994-006-6226-1. 

[49] M. Middlehurst, J. Large, and A. Bagnall, “The Canonical Interval Forest (CIF) 

Classifier for Time Series Classification,” in 2020 IEEE International Conference on 

Big Data (Big Data), Atlanta, GA, USA: IEEE, Dec. 2020, pp. 188–195. doi: 

10.1109/BigData50022.2020.9378424. 

[50] A. Dempster, D. F. Schmidt, and G. I. Webb, “quant: a minimalist interval method for 

time series classification,” Data Min Knowl Disc, vol. 38, no. 4, pp. 2377–2402, Jul. 

2024, doi: 10.1007/s10618-024-01036-9. 

[51] L. Ye and E. Keogh, “Time series shapelets: a novel technique that allows accurate, 

interpretable and fast classification,” Data Min Knowl Disc, vol. 22, no. 1–2, pp. 149–

182, Jan. 2011, doi: 10.1007/s10618-010-0179-5. 

[52] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classification of time 

series by shapelet transformation,” Data Min Knowl Disc, vol. 28, no. 4, pp. 851–881, 

Jul. 2014, doi: 10.1007/s10618-013-0322-1. 



88 

 

[53] A. Bostrom and A. Bagnall, “Binary Shapelet Transform for Multiclass Time Series 

Classification,” in Transactions on Large-Scale Data- and Knowledge-Centered 

Systems XXXII, vol. 10420, A. Hameurlain, J. Küng, R. Wagner, S. Madria, and T. 

Hara, Eds., in Lecture Notes in Computer Science, vol. 10420. , Berlin, Heidelberg: 

Springer Berlin Heidelberg, 2017, pp. 24–46. doi: 10.1007/978-3-662-55608-5_2. 

[54] I. Karlsson, P. Papapetrou, and H. Boström, “Generalized random shapelet forests,” 

Data Min Knowl Disc, vol. 30, no. 5, pp. 1053–1085, Sep. 2016, doi: 10.1007/s10618-

016-0473-y. 

[55] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-Series Classification with COTE: 

The Collective of Transformation-Based Ensembles,” IEEE Trans. Knowl. Data Eng., 

vol. 27, no. 9, pp. 2522–2535, Sep. 2015, doi: 10.1109/TKDE.2015.2416723. 

[56] J. Lines, S. Taylor, and A. Bagnall, “Time Series Classification with HIVE-COTE: The 

Hierarchical Vote Collective of Transformation-Based Ensembles,” ACM Trans. 

Knowl. Discov. Data, vol. 12, no. 5, pp. 1–35, Oct. 2018, doi: 10.1145/3182382. 

[57] J. Lines and A. Bagnall, “Time series classification with ensembles of elastic distance 

measures,” Data Min Knowl Disc, vol. 29, no. 3, pp. 565–592, May 2015, doi: 

10.1007/s10618-014-0361-2. 

[58] C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA: IEEE, Jun. 

2015, pp. 1–9. doi: 10.1109/CVPR.2015.7298594. 

[59] S. D. Deb and R. K. Jha, “Breast UltraSound Image classification using fuzzy-rank-

based ensemble network,” Biomedical Signal Processing and Control, vol. 85, p. 

104871, Aug. 2023, doi: 10.1016/j.bspc.2023.104871. 

[60] T. Dhara, P. K. Singh, and M. Mahmud, “A Fuzzy Ensemble-Based Deep learning 

Model for EEG-Based Emotion Recognition,” Cogn Comput, vol. 16, no. 3, pp. 1364–

1378, May 2024, doi: 10.1007/s12559-023-10171-2. 

[61] D. Valenkova, A. Lyanova, A. Sinitca, R. Sarkar, and D. Kaplun, “A fuzzy rank-based 

ensemble of CNN models for MRI segmentation,” Biomedical Signal Processing and 

Control, vol. 102, p. 107342, Apr. 2025, doi: 10.1016/j.bspc.2024.107342. 

[62] A. Halder, A. Dalal, S. Gharami, M. Wozniak, M. F. Ijaz, and P. K. Singh, “A fuzzy 

rank-based deep ensemble methodology for multi-class skin cancer classification,” Sci 

Rep, vol. 15, no. 1, p. 6268, Feb. 2025, doi: 10.1038/s41598-025-90423-3. 

[63] L. I. Kuncheva and J. J. Rodríguez, “A weighted voting framework for classifiers 

ensembles,” Knowl Inf Syst, vol. 38, no. 2, pp. 259–275, Feb. 2014, doi: 

10.1007/s10115-012-0586-6. 

[64] C. Chatfield and H. Xing, The analysis of time series: an introduction with R, Seventh 

edition. in Chapman & Hall/CRC texts in statistical science series. Boca Raton: CRC 

Press, Taylor and Francis Group, 2019. 

[65] U. Hassler and M.-O. Pohle, “Forecasting under Long Memory,” Journal of Financial 

Econometrics, vol. 21, no. 3, pp. 742–778, Jun. 2023, doi: 10.1093/jjfinec/nbab017. 

[66] R. Hyndman et al., forecast: Forecasting functions for time series and linear models. 

(2023). [Online]. Available: https://pkg.robjhyndman.com/forecast/ 



89 

 

[67] B. Bai, G. Li, S. Wang, Z. Wu, and W. Yan, “Time series classification based on multi-

feature dictionary representation and ensemble learning,” Expert Systems with 

Applications, vol. 169, p. 114162, May 2021, doi: 10.1016/j.eswa.2020.114162. 

[68] E. Lee, F. Rustam, P. B. Washington, F. E. Barakaz, W. Aljedaani, and I. Ashraf, 

“Racism Detection by Analyzing Differential Opinions Through Sentiment Analysis 

of Tweets Using Stacked Ensemble GCR-NN Model,” IEEE Access, vol. 10, pp. 9717–

9728, 2022, doi: 10.1109/ACCESS.2022.3144266. 

[69] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” Journal of 

Machine Learning Research, vol. 7, no. 1, pp. 1–30, 2006, [Online]. Available: 

http://jmlr.org/papers/v7/demsar06a.html 

[70] A. Ismail-Fawaz et al., “An Approach to Multiple Comparison Benchmark Evaluations 

that is Stable Under Manipulation of the Comparate Set,” May 19, 2023, arXiv: 

arXiv:2305.11921. doi: 10.48550/arXiv.2305.11921. 

 

  



90 

 

Additional Academic Achievements 

In addition, the PhD candidate has also achieved the following academic distinctions: 

• Rahman, A., Umar, U., Hassan, Z., Sumara, R.: The Use of Virtual Reality Platforms 

to Improve Students’ Speaking Skills. In: Proceedings of the 2024 6th International 

Conference on Image Processing and Machine Vision. pp. 100–106. ACM, Macau 

China (2024). https://doi.org/10.1145/3645259.3645276. 

• Ramadhan, R., Fimba, A.B., Fernandes, A.A.R., Solimun, S., Junianto, F.H., Amanda, 

D.V., Sumara, R.: Explore The Determinants of Customers Time to Pay House 

Ownership Loan on Data with High Multicollinearity with PCA-Cox Regression. 

Medstat. 17, 117–127 (2024). https://doi.org/10.14710/medstat.17.2.117-127. 

• Dinnullah, R.N.I., Abusini, S., Fayeldi, T., Sumara, R.: Fisher Information Matrix for 

Generalized Poisson Regression: Evaluation of The Log-Likelihood Function. 

International Journal of Mathematics and Computer Science, 19, no. 4, 933–939 (2024). 

https://future-in-tech.net/Volume19.4.htm. 

• Veterini, A.S., Semedi, B.P., Airlangga, P.S., Rejeki, P.S., Firdaus, K.M., Mutiar, A., 

Adi, A.C., Sumara, R., Meirawan, R.F.: Preliminary Study: The Future Insight of 

Relationship Between Nutrigenomic Risk and Sepsis. Bali Med J. 13, 581–591 (2024). 

https://doi.org/10.15562/bmj.v13i1.4994. 

• Veterini, A.S., Semedi, B.P., Airlangga, P.S., Firdaus, K.M., Uhud, A.N., 

Kriswidyatomo, P., Sumara, R.: Preliminary Study: Nutrigenomics Analysis Results of 

COVID-19 Survivors. Egypt J Med Hum Genet. 25, 74 (2024). 

https://doi.org/10.1186/s43042-024-00547-w. 

• Sumara, R., Ihwani, I.L.: Siamese Network with Gabor Filter for Recognizing 

Handwritten Digits. In: Gervasi, O., Murgante, B., Taniar, D., Apduhan, B.O., Braga, 

A.C., Garau, C., and Stratigea, A. (eds.) Computational Science and Its Applications – 

ICCSA 2023. pp. 32–47. Springer Nature Switzerland, Cham (2023). 

https://doi.org/10.1007/978-3-031-36808-0_3.  

 



91 

 

• Sumara, R.: Random Subspace Ensemble Learning for Cancer Detection Based on 

Microarray Data. In: 2021 3rd International Conference on Electronics Representation 

and Algorithm (ICERA). pp. 45–50. IEEE, Yogyakarta, Indonesia (2021). 

https://doi.org/10.1109/ICERA53111.2021.9538683.  



92 

 

Appendix of Publications [P1-P3] 

[P1] ARFIMA for Feature-Based Time Series Classification 

Authors Sumara, R., Homenda, W., Pedrycz, W. 

Conference 
The annual Pacific Asia Conference on Information Systems 

(PACIS)  

Year 2024 

DOI/Link https://aisel.aisnet.org/pacis2024/track03_ba/track03_ba/2 

Ministerial Score 140 

 

  



93 

 

[P2] 
A Dictionary-Based with Stacked Ensemble Learning to Time 

Series Classification 

Authors Sumara, R., Homenda, W., Pedrycz, W., Yu, F. 

Conference 
The 24th International Conference on Computational Science 

(ICCS)  

Year 2024 

DOI/Link https://doi.org/10.1007/978-3-031-63759-9_15 

Ministerial Score 140 

 

  



94 

 

[P3] 
Time Series Classification with MuRBE: The Multiple 

Representation-Based Ensembles (under submission process) 

Authors Sumara, R., Homenda, W., Pedrycz, W., Yu, F. 

Conference  

Year 2025 

DOI/Link  

Ministerial Score  

 


	Introduction
	1.1 Summary of Contributions
	1.2 Structure of This Work
	1.3 List of Publications

	Time Series Classification Tasks
	2.1 Definitions
	2.2 UCR/UEA Time Series Classification Archive
	2.1.1 ArrowHead
	2.1.2 Beef
	2.1.3 ECG200
	2.1.4 GunPoint
	2.1.5 Plane
	2.1.6 ScreenType
	2.1.7 SemgHandGenderCh2
	2.1.8 SyntheticControl


	State-of-the-Art Overview
	3.1 Feature-Based Approaches
	3.1.1 TSFresh and FreshPRINCE
	3.1.2 Catch22
	3.1.3 Signatures

	3.2 Dictionary-Based Approaches
	3.2.1 WEASEL
	3.2.2 TDE

	3.3 Interval-Based Approaches
	3.3.1 TSF
	3.3.2 RISE
	3.3.4 STSF and R-STSF
	3.3.3 CIF
	3.3.5 QUANT

	3.4 Shapelet-Based Approaches
	3.4.1 STC
	3.4.2 RSF
	3.4.3 RDST

	3.5 Ensemble-Based Approaches

	The MuRBE Structure
	4.1 ARFIMA-RF
	4.2 SAX-GCNN
	4.2.1 Standardizing the time series
	4.2.2 Converting numeric time series into symbolic time series
	4.2.3 Generating words from symbolic time series
	4.2.4 Training deep learning model
	4.2.5 Choosing alphabet and window size

	4.3 DrCIF
	4.4 RDST

	Experiments
	5.1 Experimental Setup
	5.2 Datasets
	5.3 Results
	5.3.1 Comparison with base classifiers
	5.3.1 Comparison with the state-of-the-art methods
	5.3.1 Pairwise comparison with other ensemble-based approaches
	5.3.1 Comparison across datasets and domain applications
	5.3.2 Scalability


	Conclusions
	6.1 Summary
	6.2 Limitation

	References
	Additional Academic Achievements
	Appendix of Publications [P1-P3]

